Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels: laminar flow

Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels:... The convective heat transfer behavior of laminar flow through a smooth- and two rough-wall microchannels is investigated by performing non-intrusive and spatially resolved measurements of fluid temperature via two-color fluorescent thermometry under constant heat flux conditions at three of the four microchannel walls. Pressure-drop measurements reveal that the apparent friction factors for all surfaces agree well with established macroscale predictions for laminar flow through rectangular ducts with the onset of transition at Re > Recr = 1,800 for smooth-wall flow and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nu for smooth-wall flow agrees well with macroscale predictions in both the thermally developing and developed regimes. With increasing roughness, while an enhancement in local Nu is noted for flow in the thermally developing regime, no measurable influence is noted upon attainment of a thermally developed state. These observations are supported by the examination of temperature profiles across the microchannel at various axial positions and Re, which suggest that the thermal boundary layer may be regenerated locally by roughness in the thermal entrance region of the flow resulting in an increased axial distance (compared to smooth-wall behavior) at which thermally developed flow is attained in the presence of roughness. Finally, estimates of the bulk Nu indicate enhancement in convective heat transfer over the smooth-wall case for laminar flow at higher Re while the smooth-wall bulk Nu data are found to agree well with macroscale predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels: laminar flow

Loading next page...
 
/lp/springer_journal/non-intrusive-measurements-of-convective-heat-transfer-in-smooth-and-YnyIVHWprH
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0845-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial