Non-intrusive calibration for three-dimensional particle imaging

Non-intrusive calibration for three-dimensional particle imaging This letter introduces a non-intrusive calibration scheme for three-dimensional (3D) optical flow velocimetry techniques. For these 3D techniques, including tomographic PIV and 3D-PTV, calibration targets need to be imaged within the measurement volume at different depth positions. However, for domains with limited access and with small dimensions, it is difficult or impossible to place a calibration target. Therefore, a non-intrusive calibration approach is proposed to overcome these drawbacks, by employing light reflections of a continuous wave laser in the measurement domain. The laser is translated to different locations, yielding a set of calibration points, comprising the spatial coordinates of the light reflections and their corresponding sensor coordinates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Non-intrusive calibration for three-dimensional particle imaging

Loading next page...
 
/lp/springer_journal/non-intrusive-calibration-for-three-dimensional-particle-imaging-GiFHpgTM1V
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2167-z
Publisher site
See Article on Publisher Site

Abstract

This letter introduces a non-intrusive calibration scheme for three-dimensional (3D) optical flow velocimetry techniques. For these 3D techniques, including tomographic PIV and 3D-PTV, calibration targets need to be imaged within the measurement volume at different depth positions. However, for domains with limited access and with small dimensions, it is difficult or impossible to place a calibration target. Therefore, a non-intrusive calibration approach is proposed to overcome these drawbacks, by employing light reflections of a continuous wave laser in the measurement domain. The laser is translated to different locations, yielding a set of calibration points, comprising the spatial coordinates of the light reflections and their corresponding sensor coordinates.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 27, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off