Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem

Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem

Loading next page...
 
/lp/springer_journal/non-interior-continuation-method-for-solving-the-monotone-semidefinite-0tluE0ju1R
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2003 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-003-0765-7
Publisher site
See Article on Publisher Site

Abstract

Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: May 21, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off