Non-commuting two-local Hamiltonians for quantum error suppression

Non-commuting two-local Hamiltonians for quantum error suppression Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon–Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon–Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Non-commuting two-local Hamiltonians for quantum error suppression

Loading next page...
 
/lp/springer_journal/non-commuting-two-local-hamiltonians-for-quantum-error-suppression-0CuvQro1sW
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York (outside the USA)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1527-9
Publisher site
See Article on Publisher Site

Abstract

Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon–Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon–Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off