Noise cancellation using selectable adaptive algorithm for speech in variable noise environment

Noise cancellation using selectable adaptive algorithm for speech in variable noise environment Some of the teething problems associated in the use of two-sensor noise cancellation systems are the nature of the noise signals—a problem that imposes the use of highly complex algorithms in reducing the noise. The usage of such methods can be impractical for many real time applications, where speed of convergence and processing time are critical. At the same time, the existing approaches are based on using a single, often complex adaptive filter to minimize noise, which has been determined to be inadequate and ineffective. In this paper, a new mechanism is proposed to reduce background noise from speech communications. The procedure is based on a two-sensor adaptive noise canceller that is capable of assigning an appropriate filter adapting to properties of the noise. The criterion to achieve this is based on measuring the eigenvalue spread based on the autocorrelation of the input noise. The proposed noise canceller (INC) applies an adaptive algorithm according to the characteristics of the input signal. Various experiments based on this technique using real-world signals are conducted to gauge the effectiveness of the approach. Initial results illustrated the system capabilities in executing noise cancellation under different types of environmental noise. The results based on the INC technique indicate fast convergence rates; improvements up to 30 dB in signal-to-noise ratio and at the same time shows 65% reduction of computational power compared to conventional method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

Noise cancellation using selectable adaptive algorithm for speech in variable noise environment

Loading next page...
 
/lp/springer_journal/noise-cancellation-using-selectable-adaptive-algorithm-for-speech-in-8L4P0UgmVI
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9425-1
Publisher site
See Article on Publisher Site

Abstract

Some of the teething problems associated in the use of two-sensor noise cancellation systems are the nature of the noise signals—a problem that imposes the use of highly complex algorithms in reducing the noise. The usage of such methods can be impractical for many real time applications, where speed of convergence and processing time are critical. At the same time, the existing approaches are based on using a single, often complex adaptive filter to minimize noise, which has been determined to be inadequate and ineffective. In this paper, a new mechanism is proposed to reduce background noise from speech communications. The procedure is based on a two-sensor adaptive noise canceller that is capable of assigning an appropriate filter adapting to properties of the noise. The criterion to achieve this is based on measuring the eigenvalue spread based on the autocorrelation of the input noise. The proposed noise canceller (INC) applies an adaptive algorithm according to the characteristics of the input signal. Various experiments based on this technique using real-world signals are conducted to gauge the effectiveness of the approach. Initial results illustrated the system capabilities in executing noise cancellation under different types of environmental noise. The results based on the INC technique indicate fast convergence rates; improvements up to 30 dB in signal-to-noise ratio and at the same time shows 65% reduction of computational power compared to conventional method.

Journal

International Journal of Speech TechnologySpringer Journals

Published: Jun 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off