Noise and the magic square game

Noise and the magic square game A pseudo-telepathy game is a game for two or more players for which there is no classical winning strategy, but there is a winning strategy based on sharing quantum entanglement by the players. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations and also of noisy measurement devices on the quantum winning strategy for the magic square game. The question of how strong both types of noise can be so that quantum players would still be better than classical ones is also dealt with. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Noise and the magic square game

Loading next page...
 
/lp/springer_journal/noise-and-the-magic-square-game-4M9APExjjV
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Physics, general; Theoretical, Mathematical and Computational Physics; Quantum Physics; Computer Science, general; Mathematics, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0254-x
Publisher site
See Article on Publisher Site

Abstract

A pseudo-telepathy game is a game for two or more players for which there is no classical winning strategy, but there is a winning strategy based on sharing quantum entanglement by the players. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations and also of noisy measurement devices on the quantum winning strategy for the magic square game. The question of how strong both types of noise can be so that quantum players would still be better than classical ones is also dealt with.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 14, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off