Node pacing for small optical RAM-buffered packet-switching networks

Node pacing for small optical RAM-buffered packet-switching networks One of the difficulties with optical packet switched (OPS) networks is buffering optical packets in the network. The only available solution that can currently be used for buffering in the optical domain is using long fiber lines called fiber delay lines (FDLs), which have severe limitations. Moreover, the research on optical RAM presently being done is not expected to achieve a large capacity soon. However, the burstiness of Internet traffic causes high packet drop rates and low utilization in very small buffered OPS networks. We therefore propose a new node-based pacing algorithm for decreasing burstiness. We show that by applying some simple pacing at the edge or core backbone nodes, the performance of very small optical RAM buffered core OPS networks with variable-length packets can be notably increased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Node pacing for small optical RAM-buffered packet-switching networks

Loading next page...
 
/lp/springer_journal/node-pacing-for-small-optical-ram-buffered-packet-switching-networks-KDZ9h0OxK7
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-011-0317-z
Publisher site
See Article on Publisher Site

Abstract

One of the difficulties with optical packet switched (OPS) networks is buffering optical packets in the network. The only available solution that can currently be used for buffering in the optical domain is using long fiber lines called fiber delay lines (FDLs), which have severe limitations. Moreover, the research on optical RAM presently being done is not expected to achieve a large capacity soon. However, the burstiness of Internet traffic causes high packet drop rates and low utilization in very small buffered OPS networks. We therefore propose a new node-based pacing algorithm for decreasing burstiness. We show that by applying some simple pacing at the edge or core backbone nodes, the performance of very small optical RAM buffered core OPS networks with variable-length packets can be notably increased.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jul 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off