NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins

NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix... In the case of soluble proteins, chemical shift mapping is used to identify the intermolecular interfaces when the NOE-based calculations of spatial structure of the molecular assembly are impossible or impracticable. However, the reliability of the membrane protein interface mapping based on chemical shifts or other relevant parameters was never assessed. In the present work, we investigate the predictive power of various NMR parameters that can be used for mapping of helix–helix interfaces in dimeric TM domains. These parameters are studied on a dataset containing three structures of helical dimers obtained for two different proteins in various membrane mimetics. We conclude that the amide chemical shifts have very little predictive value, while the methyl chemical shifts could be used to predict interfaces, though with great care. We suggest an approach based on conversion of the carbon NMR relaxation parameters of methyl groups into parameters of motion, and one of such values, the characteristic time of methyl rotation, appears to be a reliable sensor of interhelix contacts in transmembrane domains. The carbon NMR relaxation parameters of methyl groups can be measured accurately and with high sensitivity and resolution, making the proposed parameter a useful tool for investigation of protein-protein interfaces even in large membrane proteins. An approach to build the models of transmembrane dimers based on perturbations of methyl parameters and TMDOCK software is suggested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biomolecular NMR Springer Journals

NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins

Loading next page...
 
/lp/springer_journal/nmr-relaxation-parameters-of-methyl-groups-as-a-tool-to-map-the-EDQmQ616dM
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Biological and Medical Physics, Biophysics; Biochemistry, general; Spectroscopy/Spectrometry
ISSN
0925-2738
eISSN
1573-5001
D.O.I.
10.1007/s10858-017-0146-1
Publisher site
See Article on Publisher Site

Abstract

In the case of soluble proteins, chemical shift mapping is used to identify the intermolecular interfaces when the NOE-based calculations of spatial structure of the molecular assembly are impossible or impracticable. However, the reliability of the membrane protein interface mapping based on chemical shifts or other relevant parameters was never assessed. In the present work, we investigate the predictive power of various NMR parameters that can be used for mapping of helix–helix interfaces in dimeric TM domains. These parameters are studied on a dataset containing three structures of helical dimers obtained for two different proteins in various membrane mimetics. We conclude that the amide chemical shifts have very little predictive value, while the methyl chemical shifts could be used to predict interfaces, though with great care. We suggest an approach based on conversion of the carbon NMR relaxation parameters of methyl groups into parameters of motion, and one of such values, the characteristic time of methyl rotation, appears to be a reliable sensor of interhelix contacts in transmembrane domains. The carbon NMR relaxation parameters of methyl groups can be measured accurately and with high sensitivity and resolution, making the proposed parameter a useful tool for investigation of protein-protein interfaces even in large membrane proteins. An approach to build the models of transmembrane dimers based on perturbations of methyl parameters and TMDOCK software is suggested.

Journal

Journal of Biomolecular NMRSpringer Journals

Published: Oct 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial