NLScore: a novel quantitative algorithm based on 3 dimensional structural determinants to predict the probability of nuclear localization in proteins containing classical nuclear localization signals

NLScore: a novel quantitative algorithm based on 3 dimensional structural determinants to predict... The presence of a nuclear localization signal (NLS) in proteins can be inferred by the presence of a stretch of basic amino acids (KRKK). These NLSs are termed classical NLS (cNLS). However, only a fraction of proteins containing the cNLS pattern are transported into the nucleus by binding to importin α. Hence, there must exist, additional structural determinants that guide the appropriate interaction between putative NLSs containing cargo and importin α. Using 52 protein structures containing cNLS obtained from RCSB PDB, we assembled a training set and a validation set such that both sets were comprised of a combination of proteins with proven nuclear localization and ones that were non-nuclear. We modeled the interface between cargoes containing cNLS and importin α. We conducted rigid body docking and produced induced-fit modes by allowing both side chain and the backbone to be flexible. The output of these studies and additional determinants such as energy of interaction, atomic contacts, hydrophilic interaction, cationic interaction, and penetration of the cargo protein were used to derive a 26 parameter quantitative structure activity relationship based regression equation. This was further optimized by a step-wise backward elimination approach to derive a 15 parameter score. This NLScore was not only able to correctly classify confirmed nuclear and non-nuclear localized proteins but it was able to perform better than currently implemented algorithms like NucPred, Euk-mPLoc 2.0, cNls Mapper, and NLStradamus. Leave-one-out cross validation (LOOCV) showed that NLScore correctly predicted 78.6% and 81.6% of non-nuclear and nuclear proteins respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

NLScore: a novel quantitative algorithm based on 3 dimensional structural determinants to predict the probability of nuclear localization in proteins containing classical nuclear localization signals

Loading next page...
 
/lp/springer_journal/nlscore-a-novel-quantitative-algorithm-based-on-3-dimensional-b7hhy8Tgbf
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-017-3420-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial