Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging: growing degree-days integrated model

Nitrogen prediction model of rice plant at panicle initiation stage using ground-based... Ground-based hyperspectral imaging was applied to rice plants at the panicle initiation stage to estimate nitrogen content. We developed a partial least squares regression (PLSR) model that incorporated both the reflectance and growing degree-days (GDD) to account for differences in growing temperature conditions across a 3-year period. The acquired images were divided into two components: (1) the rice plant and (2) other elements (e.g., irrigation water, soil background) by using the GreenNDVI − NDVI equation. Rice plant reflectance (Ref RICE ) was calculated as the ratio of rice plant reflectance to that of a reference board. Three types of PLSR models were constructed: 1-year, 2-year, and 2-year GDD. Mutual estimation was used to infer the predictive power of the three models, which was calculated by estimating the values for the other years. The root mean square error of prediction (RMSE) of the mutual estimation for the 1- and 2-year PLSR models was high because of overestimation and underestimation. In contrast, the RMSE of the mutual estimation for the 2-year GDD PLSR models clearly decreased. It was inferred that hyperspectral imaging at 400–1000 nm could not predict variation in the amount of growth caused by weather variation expressed as GDD. This study indicates that the combination of reflectance and temperature data could be used to potentially construct an adaptable model to identify variance in growing conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging: growing degree-days integrated model

Loading next page...
 
/lp/springer_journal/nitrogen-prediction-model-of-rice-plant-at-panicle-initiation-stage-j9Oy0UdxUp
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-015-9394-9
Publisher site
See Article on Publisher Site

Abstract

Ground-based hyperspectral imaging was applied to rice plants at the panicle initiation stage to estimate nitrogen content. We developed a partial least squares regression (PLSR) model that incorporated both the reflectance and growing degree-days (GDD) to account for differences in growing temperature conditions across a 3-year period. The acquired images were divided into two components: (1) the rice plant and (2) other elements (e.g., irrigation water, soil background) by using the GreenNDVI − NDVI equation. Rice plant reflectance (Ref RICE ) was calculated as the ratio of rice plant reflectance to that of a reference board. Three types of PLSR models were constructed: 1-year, 2-year, and 2-year GDD. Mutual estimation was used to infer the predictive power of the three models, which was calculated by estimating the values for the other years. The root mean square error of prediction (RMSE) of the mutual estimation for the 1- and 2-year PLSR models was high because of overestimation and underestimation. In contrast, the RMSE of the mutual estimation for the 2-year GDD PLSR models clearly decreased. It was inferred that hyperspectral imaging at 400–1000 nm could not predict variation in the amount of growth caused by weather variation expressed as GDD. This study indicates that the combination of reflectance and temperature data could be used to potentially construct an adaptable model to identify variance in growing conditions.

Journal

Precision AgricultureSpringer Journals

Published: Apr 12, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off