Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat

Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat Key message Our study first reveals that Mo mediates oxidative tolerance through ABA signaling. Moreover, NO acts downstream of ABA signaling in Mo-induced oxidative tolerance in wheat under drought stress. Abstract Nitric oxide (NO) is related to the improvement of molybdenum (Mo)-induced oxidative tolerance. While the function of Mo in abscisic acid (ABA) synthesis and in mediating oxidative tolerance by the interaction of ABA and NO remain to be studied. The –Mo and +Mo treatment-cultivated wheat was separated and subsequently was pretreated with AO inhibitor, ABA synthesis inhibitor, exogenous ABA, NO scavenger, NO donor or their combinations under polyethyl- ene glycol 6000 (PEG)-stimulated drought stress (PSD). The AO activity and ABA content were increased by Mo in wheat under PSD, however, AO inhibitor decreased AO activity, correspondingly reduced ABA accumulation, suggesting that AO involves in the regulation of Mo-induced ABA synthesis. Mo enhanced activities and expressions of antioxidant enzyme, while these effects of Mo were reversed by AO inhibitor and ABA synthesis inhibitor due to the decrease of ABA content, but regained by exogenous ABA, indicating that Mo induces oxidative tolerance through ABA. Moreover, NO scavenger inhibited activities of antioxidant enzyme caused by Mo and exogenous ABA, but the inhibitions http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell Reports Springer Journals

Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat

Loading next page...
 
/lp/springer_journal/nitric-oxide-acts-downstream-of-abscisic-acid-in-molybdenum-induced-nh3R50BToI
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Cell Biology; Biotechnology; Plant Biochemistry
ISSN
0721-7714
eISSN
1432-203X
D.O.I.
10.1007/s00299-018-2254-0
Publisher site
See Article on Publisher Site

Abstract

Key message Our study first reveals that Mo mediates oxidative tolerance through ABA signaling. Moreover, NO acts downstream of ABA signaling in Mo-induced oxidative tolerance in wheat under drought stress. Abstract Nitric oxide (NO) is related to the improvement of molybdenum (Mo)-induced oxidative tolerance. While the function of Mo in abscisic acid (ABA) synthesis and in mediating oxidative tolerance by the interaction of ABA and NO remain to be studied. The –Mo and +Mo treatment-cultivated wheat was separated and subsequently was pretreated with AO inhibitor, ABA synthesis inhibitor, exogenous ABA, NO scavenger, NO donor or their combinations under polyethyl- ene glycol 6000 (PEG)-stimulated drought stress (PSD). The AO activity and ABA content were increased by Mo in wheat under PSD, however, AO inhibitor decreased AO activity, correspondingly reduced ABA accumulation, suggesting that AO involves in the regulation of Mo-induced ABA synthesis. Mo enhanced activities and expressions of antioxidant enzyme, while these effects of Mo were reversed by AO inhibitor and ABA synthesis inhibitor due to the decrease of ABA content, but regained by exogenous ABA, indicating that Mo induces oxidative tolerance through ABA. Moreover, NO scavenger inhibited activities of antioxidant enzyme caused by Mo and exogenous ABA, but the inhibitions

Journal

Plant Cell ReportsSpringer Journals

Published: Jan 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off