Nitric Oxide Activates or Inhibits Skeletal Muscle Ryanodine Receptors Depending on Its Concentration, Membrane Potential and Ligand Binding

Nitric Oxide Activates or Inhibits Skeletal Muscle Ryanodine Receptors Depending on Its... We show that rabbit skeletal RyR channels in lipid bilayers can be activated or inhibited by NO, in a manner that depends on donor concentration, membrane potential and the presence of channel agonists. 10 μm S-nitroso-N-acetyl-penicillamine (SNAP) increased RyR activity at −40 mV within 15 sec of addition to the cis chamber, with a 2-fold increase in frequency of channel opening (F o ). 10 μm SNAP did not alter activity at +40 mV and did not further activate RyRs previously activated by 2 mm cis ATP at +40 or −40 mV. In contrast to the increase in F o with 10 μm SNAP, 1 mm SNAP caused a 2-fold reduction in F o but a 1.5-fold increase in mean open time (T o ) at −40 mV in the absence of ATP. 1 mm SNAP or 0.5 mm sodium nitroprusside (SNP) induced ∼3-fold reductions in F o and T o at +40 or −40 mV when channels were activated by 2 mm cis ATP or in channels activated by 6.5 μm peptide A at −40 mV (peptide A corresponds to part of the II–III loop of the skeletal dihydropyridine receptor). Both SNAP-induced activation and SNAP/SNP-induced inhibition were reversed by 2 mm dithiothreitol. The results suggest that S-Nitrosylation or oxidation of at least three classes of protein thiols by NO each produced characteristic changes in RyR activity. We propose that, in vivo, initial release of NO activates RyRs, but stronger release increases [NO] and inhibits RyR activity and contraction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Nitric Oxide Activates or Inhibits Skeletal Muscle Ryanodine Receptors Depending on Its Concentration, Membrane Potential and Ligand Binding

Loading next page...
 
/lp/springer_journal/nitric-oxide-activates-or-inhibits-skeletal-muscle-ryanodine-receptors-6uhLkqYstt
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001022
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial