Nickel Toxicity and Distribution in Maize Roots

Nickel Toxicity and Distribution in Maize Roots A new histochemical method for Ni determination has been developed and employed to study the pattern of Ni distribution in plant tissues. Two-day-old seedlings of maize (Zea mays L.) were transferred onto 15, 20, 25, and 35 μM Ni(NO3)2 solutions in the presence of 3 mM Ca(NO3)2, and Ni localization in shoot and root tissues was investigated at days 2 and 7 of the incubation. Following two days of incubation, Ni was found in all root tissues, and its content increased with the period of exposure and from the tip to the root base. Independent of root region and tissue, Ni content in the protoplasts exceeded that in the cell walls. Ni penetrated the endodermal barrier and accumulated in the endodermis and pericycle to the highest concentration. Ni accumulation in the pericycle restricted root branching. Ni did not affect the final cell length, and the inhibition of root growth resulted from suppressed cell division. In the shoots, Ni content was below the level discerned by the dimethylglyoximine method; we therefore conclude that maize belongs to excluder plants, with their root systems functioning as a barrier limiting heavy metal intake by aboveground organs. The pattern of Ni transport differs from that of Cd and Pb; this difference stands for specific toxic effects of Ni, including an arrest of root branching. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Nickel Toxicity and Distribution in Maize Roots

Loading next page...
 
/lp/springer_journal/nickel-toxicity-and-distribution-in-maize-roots-jf02gpeEuF
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1025660712475
Publisher site
See Article on Publisher Site

Abstract

A new histochemical method for Ni determination has been developed and employed to study the pattern of Ni distribution in plant tissues. Two-day-old seedlings of maize (Zea mays L.) were transferred onto 15, 20, 25, and 35 μM Ni(NO3)2 solutions in the presence of 3 mM Ca(NO3)2, and Ni localization in shoot and root tissues was investigated at days 2 and 7 of the incubation. Following two days of incubation, Ni was found in all root tissues, and its content increased with the period of exposure and from the tip to the root base. Independent of root region and tissue, Ni content in the protoplasts exceeded that in the cell walls. Ni penetrated the endodermal barrier and accumulated in the endodermis and pericycle to the highest concentration. Ni accumulation in the pericycle restricted root branching. Ni did not affect the final cell length, and the inhibition of root growth resulted from suppressed cell division. In the shoots, Ni content was below the level discerned by the dimethylglyoximine method; we therefore conclude that maize belongs to excluder plants, with their root systems functioning as a barrier limiting heavy metal intake by aboveground organs. The pattern of Ni transport differs from that of Cd and Pb; this difference stands for specific toxic effects of Ni, including an arrest of root branching.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 11, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off