Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens

Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi... Representatives of Brassicaceae species—the hyperaccumulator Noccaea caerulescens F.K. Mey and the metal excluder Thlaspi arvense L.—were compared in terms of their ability to accumulate nickel (Ni) and zinc (Zn) and their tolerance to these metals. Four ecotypes of N. caerulescens were used: the ecotypes La Calamine (LC, Belgium) and Saint Felix de Palliéres (SF, France) grow naturally on calamine soils rich in Zn, Cd, and Pb; the ecotype Monte Prinzera (MP, Italy) originates from serpentine soils rich in Ni, Co, and Cr; and the ecotype Lellingen (LE, Luxembourg) inhabits non-metalliferous soils. The plants of N. caerulescens were grown for 8 weeks in a half-strength Hoagland solution supplemented with 25, 100, 200, 300, and 400 μM Ni(NO3)2 (ecotypes LC, SF, MP, LE) or 100, 200, 400, 800, and 1000 μM Zn(NO3)2 (ecotypes LC, SF, LE); the plants of T. arvense were grown in the presence of 10, 20, 25, and 30 μM Ni(NO3)2 or 40, 50, 60, 70, 80 μM Zn(NO3)2. The toxic effect of Ni and Zn was assessed from changes in dry matter of roots and shoots of treated plants compared to untreated. The content of metals in roots and shoots was determined by means of atomic absorption spectrophotometry. The Ni-accumulating capacity of N. caerulescens ecotypes increased in the order: LC < SF < LE < MP, and the Zn-accumulating capacity increased in the row: LC < SF < LE. In the hyperaccumulating plant N. caerulescens, the increments of biomass started to decrease at a lower metal content in roots than in shoots, whereas the opposite pattern was observed in the metal excluder T. arvense. Since T. arvense plants accumulated Ni and Zn in roots, whereas N. caerulescens accumulated these metals in shoots, one may assume that the greater sensitivity of root growth compared with shoots in N. caerulescens was determined by more effective mechanisms of metal detoxification in shoots. Conversely, the higher sensitivity of shoot growth compared to root growth in T. arvense was determined by more effective mechanisms of metal detoxification in roots. Being more tolerant to Ni and Zn than T. arvense plants, the N. caerulescens ecotypes differed substantially in terms of metal-accumulating capacity and their tolerance to heavy metals. The ecotype originating from non-metalliferous soils (LE) accumulated larger amounts of Zn, but was less tolerant compared with ecotypes growing naturally on calamine soils (SF and LC), whereas the ecotype occurring on serpentine soils (MP) exhibited a markedly greater tolerance to Ni, compared with other ecotypes examined, as well as the largest accumulation of this metal. The results indicate the existence of different mechanisms responsible for plant tolerance to Ni and Zn; the study of these mechanisms is a promising direction for future research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens

Loading next page...
 
/lp/springer_journal/nickel-and-zinc-accumulation-capacities-and-tolerance-to-these-metals-DYkgHvS4jN
Publisher
Springer US
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714020137
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial