Niche conservatism and spread of seaweed invasive lineages with different residence time in the Mediterranean Sea

Niche conservatism and spread of seaweed invasive lineages with different residence time in the... Marine algae invasions attract a lot of interest as they are altering the structure of marine ecosystems. However, niche dynamics and risk predictions of marine invasions integrating phylogeographic structure in the analyses have not yet been investigated. In this study, we perform a comprehensive analysis of two invasive lineages of Caulerpa taxifolia with different residence time in the Mediterranean Sea for a better understanding of their invasive processes. We performed lineage-based and species-based niche models to assess the risk of invasion, the spatial overlap, and the variables delimiting the distribution of the two lineages. We also compared the effect of using different extents on niche overlap and niche shift analyses. Intraspecific models with pooled occurrences accurately found two separate regions susceptible of invasion for each invasive lineage in the Mediterranean, while species-based predictions underestimated invaded regions. The invasive lineages spread across colder coastal areas than the species. Altogether, we provide evidence that different invasive lineages of algae show dissimilar environmental responses and invasive ranges that are not detectable by species-based analyses. Moreover, niche overlap and niche shift analyses seem to depend greatly on the geographical extent used. According to the most appropriate extent (worldwide), the invaded range did not show niche shift, and thus, no evidence of a post-introduction adaptation scenario was found as both lineages invaded habitats similar to their Australian native locations. Actions to prevent further spreading of the most recent invasive lineage are needed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Invasions Springer Journals

Niche conservatism and spread of seaweed invasive lineages with different residence time in the Mediterranean Sea

Loading next page...
 
/lp/springer_journal/niche-conservatism-and-spread-of-seaweed-invasive-lineages-with-zVRDIOgjpH
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Ecology; Freshwater & Marine Ecology; Plant Sciences; Developmental Biology
ISSN
1387-3547
eISSN
1573-1464
D.O.I.
10.1007/s10530-017-1544-8
Publisher site
See Article on Publisher Site

Abstract

Marine algae invasions attract a lot of interest as they are altering the structure of marine ecosystems. However, niche dynamics and risk predictions of marine invasions integrating phylogeographic structure in the analyses have not yet been investigated. In this study, we perform a comprehensive analysis of two invasive lineages of Caulerpa taxifolia with different residence time in the Mediterranean Sea for a better understanding of their invasive processes. We performed lineage-based and species-based niche models to assess the risk of invasion, the spatial overlap, and the variables delimiting the distribution of the two lineages. We also compared the effect of using different extents on niche overlap and niche shift analyses. Intraspecific models with pooled occurrences accurately found two separate regions susceptible of invasion for each invasive lineage in the Mediterranean, while species-based predictions underestimated invaded regions. The invasive lineages spread across colder coastal areas than the species. Altogether, we provide evidence that different invasive lineages of algae show dissimilar environmental responses and invasive ranges that are not detectable by species-based analyses. Moreover, niche overlap and niche shift analyses seem to depend greatly on the geographical extent used. According to the most appropriate extent (worldwide), the invaded range did not show niche shift, and thus, no evidence of a post-introduction adaptation scenario was found as both lineages invaded habitats similar to their Australian native locations. Actions to prevent further spreading of the most recent invasive lineage are needed.

Journal

Biological InvasionsSpringer Journals

Published: Aug 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off