Ni/silica-based bimetallic catalysts by solid-state co-reduction of admixed metal oxides for acetic acid hydroconversion to ethanol

Ni/silica-based bimetallic catalysts by solid-state co-reduction of admixed metal oxides for... Consecutive reduction of acetic acid to ethanol was investigated looking for advantageous bimetallic catalysts for the processing of volatile fatty acids that can be produced by thermochemical or biological biomass degradation. The reactant acid was hydrotreated in a flow-through reactor at 21 bar total pressure and 200–380 °C over fumed silica loaded with Ni main metal and Cu, Zn, Cd, Ga, In, Sn modifying metals. By varying these bimetallic composites prepared by solid-state co-reduction of admixed metal oxide precursors, the characteristic hydrodecarbonylation activity of nickel can be completely eliminated and a high ethanol yield can be attained selectively with the exception of Zn and Cd. The low boiling point and high volatility of these two elements in group IIb exclude formation of stable bimetallic composition. Indium and tin doping were found to be the most efficient. The lower reduction temperature of the In2O3 was found to be the advantage of novel In doping compared to well-known Sn-admission using oxide precursors for introduction of the second metal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Ni/silica-based bimetallic catalysts by solid-state co-reduction of admixed metal oxides for acetic acid hydroconversion to ethanol

Loading next page...
 
/lp/springer_journal/ni-silica-based-bimetallic-catalysts-by-solid-state-co-reduction-of-ZhV8vErXGd
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-1957-x
Publisher site
See Article on Publisher Site

Abstract

Consecutive reduction of acetic acid to ethanol was investigated looking for advantageous bimetallic catalysts for the processing of volatile fatty acids that can be produced by thermochemical or biological biomass degradation. The reactant acid was hydrotreated in a flow-through reactor at 21 bar total pressure and 200–380 °C over fumed silica loaded with Ni main metal and Cu, Zn, Cd, Ga, In, Sn modifying metals. By varying these bimetallic composites prepared by solid-state co-reduction of admixed metal oxide precursors, the characteristic hydrodecarbonylation activity of nickel can be completely eliminated and a high ethanol yield can be attained selectively with the exception of Zn and Cd. The low boiling point and high volatility of these two elements in group IIb exclude formation of stable bimetallic composition. Indium and tin doping were found to be the most efficient. The lower reduction temperature of the In2O3 was found to be the advantage of novel In doping compared to well-known Sn-admission using oxide precursors for introduction of the second metal.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 5, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off