New strategy for band-gap tuning in semiconductor nanocrystals

New strategy for band-gap tuning in semiconductor nanocrystals In the last decade, the main efforts have focused on the preparation of different sized binary II–VI group semiconductor nanocrystals to obtain different color-emitting luminescence. However, the tuning of physical and chemical properties by changing the particle size could cause problems in many applications, in particular if unstable small particles are used. Recent advances have led to the exploration of tunable optical properties by changing their constituent stoichiometries in ternary alloy nanocrystals. High-quality Zn x Cd1−x Se alloy nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals or embryonic CdSe nuclei. With increasing Zn content, a composition-tunable emission across the whole visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. High-quality alloy Zn x Cd1−x S nanocrystals have been obtained by the conucleation and co-growth of the constituents through the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur at elevated temperatures. The obtained Zn x Cd1−x S alloy nanocrystals possess superior optical properties with photoluminescence quantum yields of 25–50%, especially the extremely narrow emission spectral width (fwhm=14 nm). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

New strategy for band-gap tuning in semiconductor nanocrystals

Loading next page...
 
/lp/springer_journal/new-strategy-for-band-gap-tuning-in-semiconductor-nanocrystals-0U8C0w1zhY
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856708783623456
Publisher site
See Article on Publisher Site

Abstract

In the last decade, the main efforts have focused on the preparation of different sized binary II–VI group semiconductor nanocrystals to obtain different color-emitting luminescence. However, the tuning of physical and chemical properties by changing the particle size could cause problems in many applications, in particular if unstable small particles are used. Recent advances have led to the exploration of tunable optical properties by changing their constituent stoichiometries in ternary alloy nanocrystals. High-quality Zn x Cd1−x Se alloy nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals or embryonic CdSe nuclei. With increasing Zn content, a composition-tunable emission across the whole visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. High-quality alloy Zn x Cd1−x S nanocrystals have been obtained by the conucleation and co-growth of the constituents through the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur at elevated temperatures. The obtained Zn x Cd1−x S alloy nanocrystals possess superior optical properties with photoluminescence quantum yields of 25–50%, especially the extremely narrow emission spectral width (fwhm=14 nm).

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off