New retinal light damage QTL in mice with the light-sensitive RPE65 LEU variant

New retinal light damage QTL in mice with the light-sensitive RPE65 LEU variant The purpose of this study was to determine the QTL that influence acute, light-induced retinal degeneration differences between the BALB/cByJ and 129S1/SvImJ mouse strains. Five- to 6-week-old F2 progeny of an intercross between the two strains were exposed to 15,000 LUX of white light for 1 h after their pupils were dilated, placed in the dark for 16 h, and kept for 10–12 days in dim cyclic light before retinal rhodopsin was measured spectrophotometrically. This was used as the quantitative trait for retinal degeneration. Neither gender nor pigmentation had a significant influence on the amount of rhodopsin after light exposure in the F2 progeny. For genetic study, DNAs of the 27–36 F2 progeny with the highest and 27–36 F2 with the lowest levels of rhodopsin after light exposure were genotyped with 71 dinucleotide repeat markers spanning the genome. Any marker with a 95% probability of being associated with phenotype was tested in all 289 F2 progeny. Data were analyzed with Map Manager QTX. Significant QTL were found on mouse Chrs 1 and 4, and suggestive QTL on Chrs 6 and 2. The four QTL together equal an estimated 78% of the total genetic effect, and each of the QTL represents a gene with BALB/c susceptible alleles. The Chr 6 QTL is in the same region as a highly significant age-related retinal degeneration QTL found previously. Identification of these QTL is a first step toward identifying the modifier genes/alleles they represent, and identification of the modifiers may provide important information for human retinal diseases that are accelerated by light exposure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

New retinal light damage QTL in mice with the light-sensitive RPE65 LEU variant

Loading next page...
1
 
/lp/springer_journal/new-retinal-light-damage-qtl-in-mice-with-the-light-sensitive-rpe65-pf7jAjHdWG
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2336-2
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study was to determine the QTL that influence acute, light-induced retinal degeneration differences between the BALB/cByJ and 129S1/SvImJ mouse strains. Five- to 6-week-old F2 progeny of an intercross between the two strains were exposed to 15,000 LUX of white light for 1 h after their pupils were dilated, placed in the dark for 16 h, and kept for 10–12 days in dim cyclic light before retinal rhodopsin was measured spectrophotometrically. This was used as the quantitative trait for retinal degeneration. Neither gender nor pigmentation had a significant influence on the amount of rhodopsin after light exposure in the F2 progeny. For genetic study, DNAs of the 27–36 F2 progeny with the highest and 27–36 F2 with the lowest levels of rhodopsin after light exposure were genotyped with 71 dinucleotide repeat markers spanning the genome. Any marker with a 95% probability of being associated with phenotype was tested in all 289 F2 progeny. Data were analyzed with Map Manager QTX. Significant QTL were found on mouse Chrs 1 and 4, and suggestive QTL on Chrs 6 and 2. The four QTL together equal an estimated 78% of the total genetic effect, and each of the QTL represents a gene with BALB/c susceptible alleles. The Chr 6 QTL is in the same region as a highly significant age-related retinal degeneration QTL found previously. Identification of these QTL is a first step toward identifying the modifier genes/alleles they represent, and identification of the modifiers may provide important information for human retinal diseases that are accelerated by light exposure.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off