New materials based on thiazolothiazole and thiophene candidates for optoelectronic device applications: theoretical investigations

New materials based on thiazolothiazole and thiophene candidates for optoelectronic device... We report theoretical analysis on the geometries and electronic properties of new conjugated compounds based on thiazolothiazole synthesized by Ando et al. (Synth. Met., 156:327 [13]). The theoretical ground-state geometry and electronic structure of the studied molecules were investigated by the density functional theory (DFT) method at Becke’s three-parameter functional and Lee–Yang–Parr functional (B3LYP) level with 6-31G(d,p) basis set. The effects of the ring structure and the substituents on the geometries and electronic properties of these materials are discussed to investigate the relationship between molecular structure and optoelectronic properties. This investigation was used to drive further syntheses towards compounds more useful as active optoelectronic materials. Theoretical knowledge of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the components is basic in studying organic solar cells, so the HOMO, LUMO, and gap energy V oc (open-circuit voltage) of the studied compounds are calculated and discussed. These properties suggest these materials as good candidates for use in organic dye-sensitized solar cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

New materials based on thiazolothiazole and thiophene candidates for optoelectronic device applications: theoretical investigations

Loading next page...
 
/lp/springer_journal/new-materials-based-on-thiazolothiazole-and-thiophene-candidates-for-ziKU8FPPjG
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0789-1
Publisher site
See Article on Publisher Site

Abstract

We report theoretical analysis on the geometries and electronic properties of new conjugated compounds based on thiazolothiazole synthesized by Ando et al. (Synth. Met., 156:327 [13]). The theoretical ground-state geometry and electronic structure of the studied molecules were investigated by the density functional theory (DFT) method at Becke’s three-parameter functional and Lee–Yang–Parr functional (B3LYP) level with 6-31G(d,p) basis set. The effects of the ring structure and the substituents on the geometries and electronic properties of these materials are discussed to investigate the relationship between molecular structure and optoelectronic properties. This investigation was used to drive further syntheses towards compounds more useful as active optoelectronic materials. Theoretical knowledge of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the components is basic in studying organic solar cells, so the HOMO, LUMO, and gap energy V oc (open-circuit voltage) of the studied compounds are calculated and discussed. These properties suggest these materials as good candidates for use in organic dye-sensitized solar cells.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 12, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off