New low-temperature method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasi-fullerenes C48, C42, C40

New low-temperature method for joint synthesis of C60 fullerene and new carbon molecules in the... Method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasifullerenes C48, C42, and C40, alternative to arc-discharge technique, was developed for the first time. The process of fullerenization of benzene molecules into carbon molecules is performed at comparatively low (∼1000°C) temperatures. It is shown that C3-C18 nanoclusters are generated as main components of a monoatomic carbon vapor under conditions that rule out sublimation of carbon. Crystalline substances containing exceedingly active small carbon molecules were synthesized for the first time. The products of benzene fullerenization were studied by methods of mass-spectrometric analysis, electron-probe X-ray microanalysis, and optical microscopy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

New low-temperature method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasi-fullerenes C48, C42, C40

Loading next page...
 
/lp/springer_journal/new-low-temperature-method-for-joint-synthesis-of-c60-fullerene-and-4YM6ExFVXV
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427213080053
Publisher site
See Article on Publisher Site

Abstract

Method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasifullerenes C48, C42, and C40, alternative to arc-discharge technique, was developed for the first time. The process of fullerenization of benzene molecules into carbon molecules is performed at comparatively low (∼1000°C) temperatures. It is shown that C3-C18 nanoclusters are generated as main components of a monoatomic carbon vapor under conditions that rule out sublimation of carbon. Crystalline substances containing exceedingly active small carbon molecules were synthesized for the first time. The products of benzene fullerenization were studied by methods of mass-spectrometric analysis, electron-probe X-ray microanalysis, and optical microscopy.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Sep 29, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off