New investigations in capillary fluidics using a drop tower

New investigations in capillary fluidics using a drop tower Drop towers provide brief terrestrial access to microgravity environments. When exploited for capillary fluidics research, the drop tower allows for unique control over an experiment’s initial conditions which can enable, enhance, or otherwise improve methods to study capillary flows and phenomena at significantly larger length scales than can be achieved on the ground. In this work, a new, highly accessible, 2.1-s tower design is introduced for such research. Enabled in part by simple macro-fabrication methods, a variety of new demonstrative experiments are presented for purely capillarity-driven flows leading to droplet ejections, bubble ingestions, sinking flows, particle injections, and multiphase flows. Due to the repeatability of the passive flows, each experiment may be used in turn as a means to study other phenomena, and forward-looking research themes are suggested that include large-length-scale passive phase separations, heat and mass transfer, and droplet dynamics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

New investigations in capillary fluidics using a drop tower

Loading next page...
 
/lp/springer_journal/new-investigations-in-capillary-fluidics-using-a-drop-tower-IRDTT44wB0
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1499-1
Publisher site
See Article on Publisher Site

Abstract

Drop towers provide brief terrestrial access to microgravity environments. When exploited for capillary fluidics research, the drop tower allows for unique control over an experiment’s initial conditions which can enable, enhance, or otherwise improve methods to study capillary flows and phenomena at significantly larger length scales than can be achieved on the ground. In this work, a new, highly accessible, 2.1-s tower design is introduced for such research. Enabled in part by simple macro-fabrication methods, a variety of new demonstrative experiments are presented for purely capillarity-driven flows leading to droplet ejections, bubble ingestions, sinking flows, particle injections, and multiphase flows. Due to the repeatability of the passive flows, each experiment may be used in turn as a means to study other phenomena, and forward-looking research themes are suggested that include large-length-scale passive phase separations, heat and mass transfer, and droplet dynamics.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 10, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off