New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice

New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities... X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex Hyp , Gy, and Phex Ska1 . Here we report analysis of two new spontaneous mutations in the mouse Phex gene, Phex Hyp-2J and Phex Hyp-Duk . Phex Hyp-2J and Phex Hyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex Hyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex Hyp-2J /Y and Phex Hyp-Duk /Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex Hyp-Duk /Y mice, but not in the normal-hearing Phex Hyp-2J/Y mice. Analysis of the phenotypes noted in Phex Hyp-Duk /Y an Phex Hyp-2J /Y males, together with those noted in Phex Ska1 /Y and Phex Hyp /Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex Hyp-Duk /Y mice could provide insight into the phenotypic variation of XLH in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice

Loading next page...
 
/lp/springer_journal/new-intragenic-deletions-in-the-phex-gene-clarify-x-linked-vHamU9ZQ74
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2310-z
Publisher site
See Article on Publisher Site

Abstract

X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex Hyp , Gy, and Phex Ska1 . Here we report analysis of two new spontaneous mutations in the mouse Phex gene, Phex Hyp-2J and Phex Hyp-Duk . Phex Hyp-2J and Phex Hyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex Hyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex Hyp-2J /Y and Phex Hyp-Duk /Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex Hyp-Duk /Y mice, but not in the normal-hearing Phex Hyp-2J/Y mice. Analysis of the phenotypes noted in Phex Hyp-Duk /Y an Phex Hyp-2J /Y males, together with those noted in Phex Ska1 /Y and Phex Hyp /Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex Hyp-Duk /Y mice could provide insight into the phenotypic variation of XLH in humans.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off