New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice

New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities... X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex Hyp , Gy, and Phex Ska1 . Here we report analysis of two new spontaneous mutations in the mouse Phex gene, Phex Hyp-2J and Phex Hyp-Duk . Phex Hyp-2J and Phex Hyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex Hyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex Hyp-2J /Y and Phex Hyp-Duk /Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex Hyp-Duk /Y mice, but not in the normal-hearing Phex Hyp-2J/Y mice. Analysis of the phenotypes noted in Phex Hyp-Duk /Y an Phex Hyp-2J /Y males, together with those noted in Phex Ska1 /Y and Phex Hyp /Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex Hyp-Duk /Y mice could provide insight into the phenotypic variation of XLH in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice

Loading next page...
 
/lp/springer_journal/new-intragenic-deletions-in-the-phex-gene-clarify-x-linked-vHamU9ZQ74
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2310-z
Publisher site
See Article on Publisher Site

Abstract

X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex Hyp , Gy, and Phex Ska1 . Here we report analysis of two new spontaneous mutations in the mouse Phex gene, Phex Hyp-2J and Phex Hyp-Duk . Phex Hyp-2J and Phex Hyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex Hyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex Hyp-2J /Y and Phex Hyp-Duk /Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex Hyp-Duk /Y mice, but not in the normal-hearing Phex Hyp-2J/Y mice. Analysis of the phenotypes noted in Phex Hyp-Duk /Y an Phex Hyp-2J /Y males, together with those noted in Phex Ska1 /Y and Phex Hyp /Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex Hyp-Duk /Y mice could provide insight into the phenotypic variation of XLH in humans.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off