New Insights into the Translocation Route of Enrofloxacin and Its Metalloantibiotics

New Insights into the Translocation Route of Enrofloxacin and Its Metalloantibiotics Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research, drug discovery and membrane biophysics. Previous studies showed that enrofloxacin metalloantibiotic has potential as an antimicrobial agent candidate, since it exhibits antimicrobial effect comparable to that of free enrofloxacin but a different translocation route. These differences in uptake mechanism can be paramount in counteracting bacterial resistance. In view of lipids role in bacterial drug uptake, the interaction of these compounds with different Escherichia coli model membranes were studied by fluorescence spectroscopy. Partition coefficients determined showed that lipid/antibiotic interactions were sensitive to liposomes composition and that the metalloantibiotic had a higher partition than free enrofloxacin. These results corroborate the different mechanism of entry proposed and can be rationalized on the basis that an electrostatic interaction between the metalloantibiotic positively charged species, present at physiological pH, and the lipids negatively charged head groups clearly promotes the lipid/antimicrobial association. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

New Insights into the Translocation Route of Enrofloxacin and Its Metalloantibiotics

Loading next page...
 
/lp/springer_journal/new-insights-into-the-translocation-route-of-enrofloxacin-and-its-j01cBjds0K
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9368-4
Publisher site
See Article on Publisher Site

Abstract

Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research, drug discovery and membrane biophysics. Previous studies showed that enrofloxacin metalloantibiotic has potential as an antimicrobial agent candidate, since it exhibits antimicrobial effect comparable to that of free enrofloxacin but a different translocation route. These differences in uptake mechanism can be paramount in counteracting bacterial resistance. In view of lipids role in bacterial drug uptake, the interaction of these compounds with different Escherichia coli model membranes were studied by fluorescence spectroscopy. Partition coefficients determined showed that lipid/antibiotic interactions were sensitive to liposomes composition and that the metalloantibiotic had a higher partition than free enrofloxacin. These results corroborate the different mechanism of entry proposed and can be rationalized on the basis that an electrostatic interaction between the metalloantibiotic positively charged species, present at physiological pH, and the lipids negatively charged head groups clearly promotes the lipid/antimicrobial association.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 17, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off