New insights into particle image velocimetry data using fuzzy-logic-based correlation/particle tracking processing

New insights into particle image velocimetry data using fuzzy-logic-based correlation/particle... Digital particle image velocimetry (DPIV) data processing has been developed to the point where DPIV image data are processed via auto- or cross-correlation techniques in near real time and the results are displayed on screen as they are processed. Correlation techniques are highly desirable, since they provide velocity measurements on a regular grid, which are readily comparable to CFD predictions of the flow field. In high-speed flows, particle lag effects are always of concern; however, the correlation operation does not provide any means for minimization or elimination of systematic errors in the recorded particle image data. In this paper, we present a combined correlation processing/particle tracking technique providing “super-resolution” velocity measurements. Fuzzy-logic principles are employed to maximize the information recovery in the correlation operation and to determine the correct particle pairings in the tracking operation. The combined correlation/particle tracking technique is applied to DPIV data obtained in the diffuser region of a high-speed centrifugal compressor producing velocity vector maps with an average density of 6 vectors/mm2. Inspection of the particle tracking results revealed large particles that were not following the flow. Using preknowledge of the flow field, the biased velocity estimates arising from large particles in the flow were removed, thereby improving the accuracy of the measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

New insights into particle image velocimetry data using fuzzy-logic-based correlation/particle tracking processing

Loading next page...
 
/lp/springer_journal/new-insights-into-particle-image-velocimetry-data-using-fuzzy-logic-AT1LwqAbTV
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000223
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial