New ideas on the origin of bilateral animals

New ideas on the origin of bilateral animals Comparative anatomy and embryology provide impressive evidence that the ventral side of all Bilateria (except Chordata) originates from the blastoporal surface, while the mouth and anus develop, respectively, from the anterior and posterior extremities of an elongated blastopore. From the point of view of paleontology, some Vendian multicellular animals represent transitional forms between Radiata and Bilateria. Vendian Bilateria are metameric organisms with a symmetrical or asymmetrical arrangement of segments; they can be considered as bilaterally symmetrical coelenterates crawling on the oral surface. In the recent Cnidaria, homologues of the genes “Brachyury,” “goosecoid” and “fork head” are expressed around the mouth. In the recent Bilateria these genes are expressed along the elongated blastopore and around the mouth and anus. These data corroborate the validity of the idea of amphistomy and the homology between the ventral surface in Bilateria and oral disk in coelenterates. It is supposed that the ancestors of Bilateria were crawling on the oral surface (=ventral side) and gave rise to both Fanerozoic Cnidaria and triploblastic Bilateria. This allows us to suggest the origin of Bilateria from Vendian bilaterally symmetrical coelenterates with numerous metameric pockets of the gastral cavity. Such ancestors gave rise to both Cnidaria and Bilateria. Apparently the primary Bilateria were complicated organisms having a coelom and segmentation, which allows us to explain the great diversity of highly organized organisms (arthropods, mollusks, and others) in the Cambrian era. An idea is proposed that Ctenophora are the only group of recent Eumetazoa that retain primary axial symmetry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

New ideas on the origin of bilateral animals

Loading next page...
 
/lp/springer_journal/new-ideas-on-the-origin-of-bilateral-animals-6lPylZDzlR
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1007/s11179-005-0019-4
Publisher site
See Article on Publisher Site

Abstract

Comparative anatomy and embryology provide impressive evidence that the ventral side of all Bilateria (except Chordata) originates from the blastoporal surface, while the mouth and anus develop, respectively, from the anterior and posterior extremities of an elongated blastopore. From the point of view of paleontology, some Vendian multicellular animals represent transitional forms between Radiata and Bilateria. Vendian Bilateria are metameric organisms with a symmetrical or asymmetrical arrangement of segments; they can be considered as bilaterally symmetrical coelenterates crawling on the oral surface. In the recent Cnidaria, homologues of the genes “Brachyury,” “goosecoid” and “fork head” are expressed around the mouth. In the recent Bilateria these genes are expressed along the elongated blastopore and around the mouth and anus. These data corroborate the validity of the idea of amphistomy and the homology between the ventral surface in Bilateria and oral disk in coelenterates. It is supposed that the ancestors of Bilateria were crawling on the oral surface (=ventral side) and gave rise to both Fanerozoic Cnidaria and triploblastic Bilateria. This allows us to suggest the origin of Bilateria from Vendian bilaterally symmetrical coelenterates with numerous metameric pockets of the gastral cavity. Such ancestors gave rise to both Cnidaria and Bilateria. Apparently the primary Bilateria were complicated organisms having a coelom and segmentation, which allows us to explain the great diversity of highly organized organisms (arthropods, mollusks, and others) in the Cambrian era. An idea is proposed that Ctenophora are the only group of recent Eumetazoa that retain primary axial symmetry.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Feb 16, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off