New energy with ZnS: novel applications for a standard transparent compound

New energy with ZnS: novel applications for a standard transparent compound We revise the electronic and optical properties of ZnS on the basis of first principles simulations, in view of novel routes for optoelectronic and photonic devices, such as transparent conductors and plasmonic applications. In particular, we consider doping effects, as induced by Al and Cu. It is shown that doping ZnS with Al imparts a n-character and allows for a plasmonic activity in the mid-IR that can be exploited for IR metamaterials, while Cu doping induces a spin dependent p-type character to the ZnS host, opening the way to the engineering of transparent p-n junctions, p-type transparent conductive materials and spintronic applications. The possibility of promoting the wurtzite lattice, presenting a different symmetry with respect to the most stable and common zincblende structure, is explored. Homo- and heterojunctions to twin ZnO are discussed as a possible route to transparent metamaterial devices for communications and energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

New energy with ZnS: novel applications for a standard transparent compound

Loading next page...
 
/lp/springer_journal/new-energy-with-zns-novel-applications-for-a-standard-transparent-52lqPELjAB
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-17156-w
Publisher site
See Article on Publisher Site

Abstract

We revise the electronic and optical properties of ZnS on the basis of first principles simulations, in view of novel routes for optoelectronic and photonic devices, such as transparent conductors and plasmonic applications. In particular, we consider doping effects, as induced by Al and Cu. It is shown that doping ZnS with Al imparts a n-character and allows for a plasmonic activity in the mid-IR that can be exploited for IR metamaterials, while Cu doping induces a spin dependent p-type character to the ZnS host, opening the way to the engineering of transparent p-n junctions, p-type transparent conductive materials and spintronic applications. The possibility of promoting the wurtzite lattice, presenting a different symmetry with respect to the most stable and common zincblende structure, is explored. Homo- and heterojunctions to twin ZnO are discussed as a possible route to transparent metamaterial devices for communications and energy.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off