New beach in a shallow estuarine lagoon: a model-based E. coli pollution risk assessment

New beach in a shallow estuarine lagoon: a model-based E. coli pollution risk assessment A 3D hydrodynamic model has been applied to the Curonian Lagoon to study the pollution impact of E. coli on a new beach that might be opened in the lagoon. Through a field survey the E. coli inputs were measured and then used in the numerical model, and through laboratory experiments the decay rate of E. coli was established. The model has been calibrated and validated for the year 2015, and several scenarios have been studied, such as sewage system breakdown, severe weather conditions or high river loads. The model has then been run for a period of 12 years to obtain a robust statistics for the pollution on the planned beach. Results show that the decay rate of E. coli is between 0.55 days and 2.3 days and the modeled decay times are compatible with these numbers. The only scenario that would create a risk for the bathing waters of the beach is a breakdown of the sewage system on the Curonian Spit. In this case the hours (and days) over legally allowable bathing threshold were computed in order to estimate the number of days the beach could be closed. These results have been confirmed by the 12 year simulations. With an influence map analysis the two most critical sewage systems could be identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Coastal Conservation Springer Journals

New beach in a shallow estuarine lagoon: a model-based E. coli pollution risk assessment

Loading next page...
 
/lp/springer_journal/new-beach-in-a-shallow-estuarine-lagoon-a-model-based-e-coli-pollution-2ng5wKTtRJ
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Geography; Geography, general; Coastal Sciences; Oceanography; Nature Conservation; Remote Sensing/Photogrammetry
ISSN
1400-0350
eISSN
1874-7841
D.O.I.
10.1007/s11852-018-0596-y
Publisher site
See Article on Publisher Site

Abstract

A 3D hydrodynamic model has been applied to the Curonian Lagoon to study the pollution impact of E. coli on a new beach that might be opened in the lagoon. Through a field survey the E. coli inputs were measured and then used in the numerical model, and through laboratory experiments the decay rate of E. coli was established. The model has been calibrated and validated for the year 2015, and several scenarios have been studied, such as sewage system breakdown, severe weather conditions or high river loads. The model has then been run for a period of 12 years to obtain a robust statistics for the pollution on the planned beach. Results show that the decay rate of E. coli is between 0.55 days and 2.3 days and the modeled decay times are compatible with these numbers. The only scenario that would create a risk for the bathing waters of the beach is a breakdown of the sewage system on the Curonian Spit. In this case the hours (and days) over legally allowable bathing threshold were computed in order to estimate the number of days the beach could be closed. These results have been confirmed by the 12 year simulations. With an influence map analysis the two most critical sewage systems could be identified.

Journal

Journal of Coastal ConservationSpringer Journals

Published: Feb 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off