New approach to the mathematical modeling of thermal regimes for electronic equipment

New approach to the mathematical modeling of thermal regimes for electronic equipment A mathematical model is constructed for simulating thermal regimes of typical electronic building blocks. It describes convective heat transfer in an air-filled cavity having finitely thick heat-conducting walls and containing a heat source. On this basis, flow patterns, temperature fields, and vorticity-vector fields are computed that characterize the convective heat transfer over a range of natural-convection parameters found in practice. Nonstationarity is shown to be a determinant of thermal regimes attained by the system. Computational relations are derived representing the variation of the average Nusselt number with the Grashof number for the boundary of the cavity. Russian Microelectronics Springer Journals

New approach to the mathematical modeling of thermal regimes for electronic equipment

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2008 by Pleiades Publishing, Ltd.
Engineering; Electrical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial