Neuron Pruning-Based Discriminative Extreme Learning Machine for Pattern Classification

Neuron Pruning-Based Discriminative Extreme Learning Machine for Pattern Classification Extreme learning machine (ELM), as a newly developed learning paradigm for the generalized single hidden layer feedforward neural networks, has been widely studied due to its unique characteristics, i.e., fast training, good generalization, and universal approximation/classification ability. A novel framework of discriminative extreme learning machine (DELM) is developed for pattern classification. In DELM, the margins between different classes are enlarged as much as possible through a technique called ε-dragging. DELM is further extended to pruning DELM (P-DELM) using L2,1-norm regularization. The performance of DELM is compared with several state-of-the-art methods on public face databases. The simulation results show the effectiveness of DELM for face recognition when there are posture, facial expression, and illumination variations. P-DELM can distinguish the importance of different hidden neurons and remove the worthless ones. The model can achieve promising performance with fewer hidden neurons and less prediction time on several benchmark datasets. In DELM model, the margins between different classes are enlarged by learning a nonnegative label relaxation matrix. The experiments validate the effectiveness of DELM. Furthermore, DELM is extended to P-DELM based on L2,1-norm regularization. The developed P-DELM can naturally distinguish the importance of different hidden neurons, which will lead to a more compact network by neuron pruning. Experimental validations on some benchmark datasets show the advantages of the proposed P-DELM method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cognitive Computation Springer Journals

Neuron Pruning-Based Discriminative Extreme Learning Machine for Pattern Classification

Loading next page...
 
/lp/springer_journal/neuron-pruning-based-discriminative-extreme-learning-machine-for-AkUfKYl24G
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Computation by Abstract Devices; Artificial Intelligence (incl. Robotics); Computational Biology/Bioinformatics
ISSN
1866-9956
eISSN
1866-9964
D.O.I.
10.1007/s12559-017-9474-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial