Neural Representations Beyond “Plus X”

Neural Representations Beyond “Plus X” In this paper we defend structural representations, more specifically neural structural representation. We are not alone in this, many are currently engaged in this endeavor. The direction we take, however, diverges from the main road, a road paved by the mathematical theory of measure that, in the 1970s, established homomorphism as the way to map empirical domains of things in the world to the codomain of numbers. By adopting the mind as codomain, this mapping became a boon for all those convinced that a representation system should bear similarities with what was being represented, but struggled to find a precise account of what such similarities mean. The euforia was brief, however, and soon homomorphism revealed itself to be affected by serious weaknesses, the primary one being that it included systems embarrassingly alien to representations. We find that the defense attempts that have followed, adopt strategies that share a common format: valid structural representations come as “homomorphism plus X”, with various “X”, provided in descriptive format only. Our alternative direction stems from the observation of the overlooked departure from homomorphism as used in the theory of measure and its later use in mental representations. In the former case, the codomain or the realm of numbers, is the most suited for developing theorems detailing the existence and uniqueness of homomorphism for a wide range of empirical domains. In the latter case, the codomain is the realm of the mind, possibly more vague and more ill-defined than the empirical domain itself. The time is ripe for articulating the mapping between represented domains and the mind in formal terms, by exploiting what is currently known about coding mechanisms in the brain. We provide a sketch of a possible development in this direction, one that adopts the theory of neural population coding as codomain. We will show that our framework is not only not in disagreement with the “plus X” proposals, but can lead to natural derivation of several of the “X”. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Minds and Machines Springer Journals

Neural Representations Beyond “Plus X”

Loading next page...
 
/lp/springer_journal/neural-representations-beyond-plus-x-iC6EDCkTet
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Philosophy of Mind; Game Theory, Economics, Social and Behav. Sciences; Cognitive Psychology; Philosophy of Science; Theory of Computation
ISSN
0924-6495
eISSN
1572-8641
D.O.I.
10.1007/s11023-018-9457-6
Publisher site
See Article on Publisher Site

Abstract

In this paper we defend structural representations, more specifically neural structural representation. We are not alone in this, many are currently engaged in this endeavor. The direction we take, however, diverges from the main road, a road paved by the mathematical theory of measure that, in the 1970s, established homomorphism as the way to map empirical domains of things in the world to the codomain of numbers. By adopting the mind as codomain, this mapping became a boon for all those convinced that a representation system should bear similarities with what was being represented, but struggled to find a precise account of what such similarities mean. The euforia was brief, however, and soon homomorphism revealed itself to be affected by serious weaknesses, the primary one being that it included systems embarrassingly alien to representations. We find that the defense attempts that have followed, adopt strategies that share a common format: valid structural representations come as “homomorphism plus X”, with various “X”, provided in descriptive format only. Our alternative direction stems from the observation of the overlooked departure from homomorphism as used in the theory of measure and its later use in mental representations. In the former case, the codomain or the realm of numbers, is the most suited for developing theorems detailing the existence and uniqueness of homomorphism for a wide range of empirical domains. In the latter case, the codomain is the realm of the mind, possibly more vague and more ill-defined than the empirical domain itself. The time is ripe for articulating the mapping between represented domains and the mind in formal terms, by exploiting what is currently known about coding mechanisms in the brain. We provide a sketch of a possible development in this direction, one that adopts the theory of neural population coding as codomain. We will show that our framework is not only not in disagreement with the “plus X” proposals, but can lead to natural derivation of several of the “X”.

Journal

Minds and MachinesSpringer Journals

Published: Jan 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off