Neural Network Classifier for Automatic Detection of Invasive Versus Noninvasive Airway Management Technique Based on Respiratory Monitoring Parameters in a Pediatric Anesthesia

Neural Network Classifier for Automatic Detection of Invasive Versus Noninvasive Airway... Children undergoing general anesthesia require airway monitoring by an anesthesia provider. The airway may be supported with noninvasive devices such as face mask or invasive devices such as a laryngeal mask airway or an endotracheal tube. The physiologic data stored provides an opportunity to apply machine learning algorithms distinguish between these modes based on pattern recognition. We retrieved three data sets from patients receiving general anesthesia in 2015 with either mask, laryngeal mask airway or endotracheal tube. Patients underwent myringotomy, tonsillectomy, adenoidectomy or inguinal hernia repair procedures. We retrieved measurements for end-tidal carbon dioxide, tidal volume, and peak inspiratory pressure and calculated statistical features for each data element per patient. We applied machine learning algorithms (decision tree, support vector machine, and neural network) to classify patients into noninvasive or invasive airway device support. We identified 300 patients per group (mask, laryngeal mask airway, and endotracheal tube) for a total of 900 patients. The neural network classifier performed better than the boosted trees and support vector machine classifiers based on the test data sets. The sensitivity, specificity, and accuracy for neural network classification are 97.5%, 96.3%, and 95.8%. In contrast, the sensitivity, specificity, and accuracy of support vector machine are 89.1%, 92.3%, and 88.3% and with the boosted tree classifier they are 93.8%, 92.1%, and 91.4%. We describe a method to automatically distinguish between noninvasive and invasive airway device support in a pediatric surgical setting based on respiratory monitoring parameters. The results show that the neural network classifier algorithm can accurately classify noninvasive and invasive airway device support. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals

Neural Network Classifier for Automatic Detection of Invasive Versus Noninvasive Airway Management Technique Based on Respiratory Monitoring Parameters in a Pediatric Anesthesia

Loading next page...
 
/lp/springer_journal/neural-network-classifier-for-automatic-detection-of-invasive-versus-J2xB4jePlf
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Medicine & Public Health; Health Informatics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
ISSN
0148-5598
eISSN
1573-689X
D.O.I.
10.1007/s10916-017-0787-3
Publisher site
See Article on Publisher Site

Abstract

Children undergoing general anesthesia require airway monitoring by an anesthesia provider. The airway may be supported with noninvasive devices such as face mask or invasive devices such as a laryngeal mask airway or an endotracheal tube. The physiologic data stored provides an opportunity to apply machine learning algorithms distinguish between these modes based on pattern recognition. We retrieved three data sets from patients receiving general anesthesia in 2015 with either mask, laryngeal mask airway or endotracheal tube. Patients underwent myringotomy, tonsillectomy, adenoidectomy or inguinal hernia repair procedures. We retrieved measurements for end-tidal carbon dioxide, tidal volume, and peak inspiratory pressure and calculated statistical features for each data element per patient. We applied machine learning algorithms (decision tree, support vector machine, and neural network) to classify patients into noninvasive or invasive airway device support. We identified 300 patients per group (mask, laryngeal mask airway, and endotracheal tube) for a total of 900 patients. The neural network classifier performed better than the boosted trees and support vector machine classifiers based on the test data sets. The sensitivity, specificity, and accuracy for neural network classification are 97.5%, 96.3%, and 95.8%. In contrast, the sensitivity, specificity, and accuracy of support vector machine are 89.1%, 92.3%, and 88.3% and with the boosted tree classifier they are 93.8%, 92.1%, and 91.4%. We describe a method to automatically distinguish between noninvasive and invasive airway device support in a pediatric surgical setting based on respiratory monitoring parameters. The results show that the neural network classifier algorithm can accurately classify noninvasive and invasive airway device support.

Journal

Journal of Medical SystemsSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off