Neural mapping of guilt: a quantitative meta-analysis of functional imaging studies

Neural mapping of guilt: a quantitative meta-analysis of functional imaging studies Guilt is a self-conscious emotion associated with the negative appraisal of one’s behavior. In recent years, several neuroimaging studies have investigated the neural correlates of guilt, but no meta-analyses have yet identified the most robust activation patterns. A systematic review of literature found 16 functional magnetic resonance imaging studies with whole-brain analyses meeting the inclusion criteria, for a total of 325 participants and 135 foci of activation. A meta-analysis was then conducted using activation likelihood estimation. Additionally, Meta-Analytic Connectivity Modeling (MACM) analysis was conducted to investigate the functional connectivity of significant clusters. The analysis revealed 12 significant clusters of brain activation (voxel-based FDR-corrected p < 0.05) located in the prefrontal, temporal and parietal regions, mainly in the left hemisphere. Only the left dorsal cingulate cluster survived stringent FWE correction (voxel-based p < 0.05). Secondary analyses (voxel-based FDR-corrected p < 0.05) on the 7 studies contrasting guilt with another emotional condition showed an association with clusters in the left precuneus, the anterior cingulate, the left medial frontal gyrus, the right superior frontal gyrus and the left superior temporal gyrus. MACM demonstrated that regions associated with guilt are highly interconnected. Our analysis identified a distributed neural network of left-lateralized regions associated with guilt. While voxel-based FDR-corrected results should be considered exploratory, the dorsal cingulate was robustly associated with guilt. We speculate that this network integrates cognitive and emotional processes involved in the experience of guilt, including self-representation, theory of mind, conflict monitoring and moral values. Limitations of our meta-analyses comprise the small sample size and the heterogeneity of included studies, and concerns about naturalistic validity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Imaging and Behavior Springer Journals

Neural mapping of guilt: a quantitative meta-analysis of functional imaging studies

Loading next page...
 
/lp/springer_journal/neural-mapping-of-guilt-a-quantitative-meta-analysis-of-functional-VLmlal0zil
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Neuroradiology; Neuropsychology; Psychiatry
ISSN
1931-7557
eISSN
1931-7565
D.O.I.
10.1007/s11682-016-9606-6
Publisher site
See Article on Publisher Site

Abstract

Guilt is a self-conscious emotion associated with the negative appraisal of one’s behavior. In recent years, several neuroimaging studies have investigated the neural correlates of guilt, but no meta-analyses have yet identified the most robust activation patterns. A systematic review of literature found 16 functional magnetic resonance imaging studies with whole-brain analyses meeting the inclusion criteria, for a total of 325 participants and 135 foci of activation. A meta-analysis was then conducted using activation likelihood estimation. Additionally, Meta-Analytic Connectivity Modeling (MACM) analysis was conducted to investigate the functional connectivity of significant clusters. The analysis revealed 12 significant clusters of brain activation (voxel-based FDR-corrected p < 0.05) located in the prefrontal, temporal and parietal regions, mainly in the left hemisphere. Only the left dorsal cingulate cluster survived stringent FWE correction (voxel-based p < 0.05). Secondary analyses (voxel-based FDR-corrected p < 0.05) on the 7 studies contrasting guilt with another emotional condition showed an association with clusters in the left precuneus, the anterior cingulate, the left medial frontal gyrus, the right superior frontal gyrus and the left superior temporal gyrus. MACM demonstrated that regions associated with guilt are highly interconnected. Our analysis identified a distributed neural network of left-lateralized regions associated with guilt. While voxel-based FDR-corrected results should be considered exploratory, the dorsal cingulate was robustly associated with guilt. We speculate that this network integrates cognitive and emotional processes involved in the experience of guilt, including self-representation, theory of mind, conflict monitoring and moral values. Limitations of our meta-analyses comprise the small sample size and the heterogeneity of included studies, and concerns about naturalistic validity.

Journal

Brain Imaging and BehaviorSpringer Journals

Published: Oct 4, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off