Neumann-Type Boundary Conditions for Hamilton-Jacobi Equations in Smooth Domains

Neumann-Type Boundary Conditions for Hamilton-Jacobi Equations in Smooth Domains Neumann or oblique derivative boundary conditions for viscosity solutions of Hamilton-Jacobi equations are considered. As developed by P.L. Lions, such boundary conditions are naturally associated with optimal control problems for which the state equations employ "Skorokhod" or reflection dynamics to ensure that the state remains in a prescribed set, assumed here to have a smooth boundary. We develop connections between the standard formulation of viscosity boundary conditions and an alternative formulation using a naturally occurring discontinuous Hamiltonian which incorporates the reflection dynamics directly. (This avoids the dependence of such equivalence on existence and uniqueness results, which may not be available in some applications.) At points of differentiability, equivalent conditions for the boundary conditions are given in terms of the Hamiltonian and the geometry of the state trajectories using optimal controls. Applied Mathematics and Optimization Springer Journals

Neumann-Type Boundary Conditions for Hamilton-Jacobi Equations in Smooth Domains

Loading next page...
Copyright © 2006 by Springer
Mathematics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial