Nematicidal potential and specific enzyme activity enhancement potential of neem (Azadirachta indica A. Juss.) aerial parts

Nematicidal potential and specific enzyme activity enhancement potential of neem (Azadirachta... Nematodes are considered as major plant parasites damaging most of the crops, and neem plant exhibits potential nematicidal and insecticidal properties. This study aimed to check nemato-toxic potential of neem (Azadirachta indica) plant using in vitro and in-planta trials against Meloidogyne incognita. The findings suggested that the neem extracts were lethal to second-stage juvenile (J2) and egg hatching with simultaneous enhancement in treated tomato plant growth. The egg numbers of M. incognita found less sensitive to the aqueous and alcoholic extracts than those of J2 as per LC50 values. Complete mortality of J2s was recorded at 40, 60, and 80% of neem standard extract (SE) dilutions and for undiluted SE of neem. The undiluted SE extract showed 100% inhibition of egg production. The highest reductions in the number of galls/root system, J2 population, and egg production were observed with 80, 85, and 82% SE as compared control (untreated distilled water). The maximum 250% growth increment was observed in the length of tomato roots supplemented with neem extracts. Resistance-related enzyme [phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POX)] activities in tomato plant have been increased significantly by supplementation with neem extracts. It appears that the aerial parts of neem (A. indica) extracts showed significant and sustainable eco-friendly nemato-toxic potential towards M. incognita growth inhibition and eradication using alcoholic extracts compared to aqueous. From this study, it was concluded that the neem aerial parts were useful for the control of M. incognita and could be a possible replacement for synthetic nematicides in crop protection with utilization in enhancement of specific enzyme activity in tomato plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Nematicidal potential and specific enzyme activity enhancement potential of neem (Azadirachta indica A. Juss.) aerial parts

Loading next page...
 
/lp/springer_journal/nematicidal-potential-and-specific-enzyme-activity-enhancement-0HqM1IK0gu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0821-5
Publisher site
See Article on Publisher Site

Abstract

Nematodes are considered as major plant parasites damaging most of the crops, and neem plant exhibits potential nematicidal and insecticidal properties. This study aimed to check nemato-toxic potential of neem (Azadirachta indica) plant using in vitro and in-planta trials against Meloidogyne incognita. The findings suggested that the neem extracts were lethal to second-stage juvenile (J2) and egg hatching with simultaneous enhancement in treated tomato plant growth. The egg numbers of M. incognita found less sensitive to the aqueous and alcoholic extracts than those of J2 as per LC50 values. Complete mortality of J2s was recorded at 40, 60, and 80% of neem standard extract (SE) dilutions and for undiluted SE of neem. The undiluted SE extract showed 100% inhibition of egg production. The highest reductions in the number of galls/root system, J2 population, and egg production were observed with 80, 85, and 82% SE as compared control (untreated distilled water). The maximum 250% growth increment was observed in the length of tomato roots supplemented with neem extracts. Resistance-related enzyme [phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POX)] activities in tomato plant have been increased significantly by supplementation with neem extracts. It appears that the aerial parts of neem (A. indica) extracts showed significant and sustainable eco-friendly nemato-toxic potential towards M. incognita growth inhibition and eradication using alcoholic extracts compared to aqueous. From this study, it was concluded that the neem aerial parts were useful for the control of M. incognita and could be a possible replacement for synthetic nematicides in crop protection with utilization in enhancement of specific enzyme activity in tomato plants.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Nov 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off