Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases

Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases Cardiac diseases are one of the foremost reasons of mortality. Hence, the early detection of cardiac diseases based on electrocardiogram (ECG) is important for delivering appropriate and timely treatment to the heart patients and it is increasing the heart patient’s survival. Recent trends in clinical decision making systems appeal automation in ECG signal processing and beat classification. Automatic beat classification is a significant method to support clinical specialists to categorize arrhythmia signals in ECG recording. The main objective of this paper is to construct novel automatic classification system for analysis of ECG signal and decision making purposes. The proposed method involves three main parts: De-noising, feature extraction and classification. Initially, discrete wavelet transform (DWT) is applied before classification for signal De-noising and feature extraction. In this work, neighborhood rough set is applied to classify the ECG signals into normal and four abnormal heart beats. The presence of neighborhood rough set classification algorithm (NRSC) produces very exciting recognition and classification abilities through a wide range of biomedical signal processing. The experimental analysis of the proposed NRSC algorithm is compared with the multi-layered perceptron, decision table, Naïve Bayes and J48 classification algorithms. Here, the performance of classification algorithms has been evaluated in terms of sensitivity, specificity, Positive predictive value, negative predictive value, false predictive value, Matthews’s correlation coefficients, F-measure, Folke–Mallows Index and Kulcznski Index. The acquired results showed that the proposed algorithm attained 99.32 % of the classification accuracy using NRSC and DWT. Results indicated that the performance of this proposed NRSC classification method was remarkably superior to that of other classification techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases

Loading next page...
 
/lp/springer_journal/neighborhood-rough-set-based-ecg-signal-classification-for-diagnosis-Ao1epmoyMz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2080-7
Publisher site
See Article on Publisher Site

Abstract

Cardiac diseases are one of the foremost reasons of mortality. Hence, the early detection of cardiac diseases based on electrocardiogram (ECG) is important for delivering appropriate and timely treatment to the heart patients and it is increasing the heart patient’s survival. Recent trends in clinical decision making systems appeal automation in ECG signal processing and beat classification. Automatic beat classification is a significant method to support clinical specialists to categorize arrhythmia signals in ECG recording. The main objective of this paper is to construct novel automatic classification system for analysis of ECG signal and decision making purposes. The proposed method involves three main parts: De-noising, feature extraction and classification. Initially, discrete wavelet transform (DWT) is applied before classification for signal De-noising and feature extraction. In this work, neighborhood rough set is applied to classify the ECG signals into normal and four abnormal heart beats. The presence of neighborhood rough set classification algorithm (NRSC) produces very exciting recognition and classification abilities through a wide range of biomedical signal processing. The experimental analysis of the proposed NRSC algorithm is compared with the multi-layered perceptron, decision table, Naïve Bayes and J48 classification algorithms. Here, the performance of classification algorithms has been evaluated in terms of sensitivity, specificity, Positive predictive value, negative predictive value, false predictive value, Matthews’s correlation coefficients, F-measure, Folke–Mallows Index and Kulcznski Index. The acquired results showed that the proposed algorithm attained 99.32 % of the classification accuracy using NRSC and DWT. Results indicated that the performance of this proposed NRSC classification method was remarkably superior to that of other classification techniques.

Journal

Soft ComputingSpringer Journals

Published: Feb 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off