Neighborhood guided differential evolution

Neighborhood guided differential evolution Differential evolution (DE) relies mainly on its mutation mechanism to guide its search. Generally, the parents involved in mutation are randomly selected from the current population. Although such a mutation strategy is easy to use, it is inefficient for solving complex problems. Hence, how to utilize population information to further enhance the search ability of the mutation operator has become one of the most salient and active topics in DE. To address this issue, a new DE framework with the concept of index-based neighborhood, is proposed in this study. The proposed framework is named as neighborhood guided DE (NGDE). In NGDE, a neighborhood guided selection (NGS) is introduced to guide the mutation process by extracting the promising search directions with the neighborhood information. NGS includes four main operators: neighborhood construction, neighbors grouping, two-level neighbors ranking, and parents selection. With these four operators, NGS can utilize the topology and fitness information of population simultaneously. To evaluate the effectiveness of the proposed approach, NGS is applied to several original and advanced DE algorithms. Experimental results have shown that NGDE generally outperforms most of the corresponding DE algorithms on different kinds of optimization problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Neighborhood guided differential evolution

Loading next page...
 
/lp/springer_journal/neighborhood-guided-differential-evolution-nuXmX5XEcF
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2088-z
Publisher site
See Article on Publisher Site

Abstract

Differential evolution (DE) relies mainly on its mutation mechanism to guide its search. Generally, the parents involved in mutation are randomly selected from the current population. Although such a mutation strategy is easy to use, it is inefficient for solving complex problems. Hence, how to utilize population information to further enhance the search ability of the mutation operator has become one of the most salient and active topics in DE. To address this issue, a new DE framework with the concept of index-based neighborhood, is proposed in this study. The proposed framework is named as neighborhood guided DE (NGDE). In NGDE, a neighborhood guided selection (NGS) is introduced to guide the mutation process by extracting the promising search directions with the neighborhood information. NGS includes four main operators: neighborhood construction, neighbors grouping, two-level neighbors ranking, and parents selection. With these four operators, NGS can utilize the topology and fitness information of population simultaneously. To evaluate the effectiveness of the proposed approach, NGS is applied to several original and advanced DE algorithms. Experimental results have shown that NGDE generally outperforms most of the corresponding DE algorithms on different kinds of optimization problems.

Journal

Soft ComputingSpringer Journals

Published: Mar 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off