Negativity in the generalized Valence Bond Solid state

Negativity in the generalized Valence Bond Solid state Using a graphical presentation of the spin S one-dimensional Valence Bond Solid (VBS) state, based on the representation theory of the $${\textit{SU}}(2)$$ SU ( 2 ) Lie algebra of spins, we compute the spectrum of a mixed-state reduced density matrix. This mixed state of two blocks of spins A and B is obtained by tracing out the spins outside A and B, in the pure VBS state density matrix. We find in particular that the negativity of the mixed state is nonzero only for adjacent subsystems. The method introduced here can be generalized to the computation of entanglement properties in Levin–Wen models, that possess a similar algebraic structure to the VBS state in the ground state. Quantum Information Processing Springer Journals

Negativity in the generalized Valence Bond Solid state

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial