Negative results for software effort estimation

Negative results for software effort estimation More than half the literature on software effort estimation (SEE) focuses on comparisons of new estimation methods. Surprisingly, there are no studies comparing state of the art latest methods with decades-old approaches. Accordingly, this paper takes five steps to check if new SEE methods generated better estimates than older methods. Firstly, collect effort estimation methods ranging from “classical” COCOMO (parametric estimation over a pre-determined set of attributes) to “modern” (reasoning via analogy using spectral-based clustering plus instance and feature selection, and a recent “baseline method” proposed in ACM Transactions on Software Engineering). Secondly, catalog the list of objections that lead to the development of post-COCOMO estimation methods. Thirdly, characterize each of those objections as a comparison between newer and older estimation methods. Fourthly, using four COCOMO-style data sets (from 1991, 2000, 2005, 2010) and run those comparisons experiments. Fifthly, compare the performance of the different estimators using a Scott-Knott procedure using (i) the A12 effect size to rule out “small” differences and (ii) a 99 % confident bootstrap procedure to check for statistically different groupings of treatments. The major negative result of this paper is that for the COCOMO data sets, nothing we studied did any better than Boehms original procedure. Hence, we conclude that when COCOMO-style attributes are available, we strongly recommend (i) using that data and (ii) use COCOMO to generate predictions. We say this since the experiments of this paper show that, at least for effort estimation, how data is collected is more important than what learner is applied to that data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Empirical Software Engineering Springer Journals

Negative results for software effort estimation

Loading next page...
 
/lp/springer_journal/negative-results-for-software-effort-estimation-f0knXmSgrA
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Software Engineering/Programming and Operating Systems; Programming Languages, Compilers, Interpreters
ISSN
1382-3256
eISSN
1573-7616
D.O.I.
10.1007/s10664-016-9472-2
Publisher site
See Article on Publisher Site

Abstract

More than half the literature on software effort estimation (SEE) focuses on comparisons of new estimation methods. Surprisingly, there are no studies comparing state of the art latest methods with decades-old approaches. Accordingly, this paper takes five steps to check if new SEE methods generated better estimates than older methods. Firstly, collect effort estimation methods ranging from “classical” COCOMO (parametric estimation over a pre-determined set of attributes) to “modern” (reasoning via analogy using spectral-based clustering plus instance and feature selection, and a recent “baseline method” proposed in ACM Transactions on Software Engineering). Secondly, catalog the list of objections that lead to the development of post-COCOMO estimation methods. Thirdly, characterize each of those objections as a comparison between newer and older estimation methods. Fourthly, using four COCOMO-style data sets (from 1991, 2000, 2005, 2010) and run those comparisons experiments. Fifthly, compare the performance of the different estimators using a Scott-Knott procedure using (i) the A12 effect size to rule out “small” differences and (ii) a 99 % confident bootstrap procedure to check for statistically different groupings of treatments. The major negative result of this paper is that for the COCOMO data sets, nothing we studied did any better than Boehms original procedure. Hence, we conclude that when COCOMO-style attributes are available, we strongly recommend (i) using that data and (ii) use COCOMO to generate predictions. We say this since the experiments of this paper show that, at least for effort estimation, how data is collected is more important than what learner is applied to that data.

Journal

Empirical Software EngineeringSpringer Journals

Published: Nov 21, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off