Negative regulation of the RTBV promoter by designed zinc finger proteins

Negative regulation of the RTBV promoter by designed zinc finger proteins The symptoms of rice tungro disease are caused by infection by a DNA-containing virus, rice tungro bacilliform virus (RTBV). To reduce expression of the RTBV promoter, and to ultimately reduce virus replication, we tested three synthetic zinc finger protein transcription factors (ZF-TFs), each comprised of six finger domains, designed to bind to sequences between −58 and +50 of the promoter. Two of these ZF-TFs reduced expression from the promoter in transient assays and in transgenic Arabidopsis thaliana plants. One of the ZF-TFs had significant effects on plant regeneration, apparently as a consequence of binding to multiple sites in the A. thaliana genome. Expression from the RTBV promoter was reduced by ~45% in transient assays and was reduced by up to 80% in transgenic plants. Co-expression of two different ZF-TFs did not further reduce expression of the promoter. These experiments suggest that ZF-TFs may be used to reduce replication of RTBV and thereby offer a potential method for control of an important crop disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Negative regulation of the RTBV promoter by designed zinc finger proteins

Loading next page...
 
/lp/springer_journal/negative-regulation-of-the-rtbv-promoter-by-designed-zinc-finger-9Z2WE00895
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9600-0
Publisher site
See Article on Publisher Site

Abstract

The symptoms of rice tungro disease are caused by infection by a DNA-containing virus, rice tungro bacilliform virus (RTBV). To reduce expression of the RTBV promoter, and to ultimately reduce virus replication, we tested three synthetic zinc finger protein transcription factors (ZF-TFs), each comprised of six finger domains, designed to bind to sequences between −58 and +50 of the promoter. Two of these ZF-TFs reduced expression from the promoter in transient assays and in transgenic Arabidopsis thaliana plants. One of the ZF-TFs had significant effects on plant regeneration, apparently as a consequence of binding to multiple sites in the A. thaliana genome. Expression from the RTBV promoter was reduced by ~45% in transient assays and was reduced by up to 80% in transgenic plants. Co-expression of two different ZF-TFs did not further reduce expression of the promoter. These experiments suggest that ZF-TFs may be used to reduce replication of RTBV and thereby offer a potential method for control of an important crop disease.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 19, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off