Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via RIP1-RIP3-MLKL-Dependent Necroptosis Pathway

Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via... Paraquat is a highly toxic prooxidant that triggers oxidative stress and multi-organ failure including that of the heart. To date, effective treatment of paraquat toxicity is still not established. Necroptosis, a newly discovered form of programmed cell death, was recently shown to be strongly associated with cardiovascular disease. Receptor interaction proteins 1 (RIP1), receptor interaction proteins 3 (RIP3), and mixed lineage kinase domain like (MLKL) are key proteins in the necroptosis pathway. Necrostatin-1 (Nec-1) is a specific inhibitor of necroptosis which acts by blocking the interaction between RIP1 and RIP3. In the present study, we studied the effect of Nec-1 on paraquat-induced cardiac contractile dysfunction and reactive oxygen species (ROS) production in the heart tissues using a mouse model. Our results revealed impaired contractile function, deranged intracellular Ca2+ handling and echocardiographic abnormalities in mice challenged with paraquat. We further found enhanced expressions of RIP1, RIP3, and MLKL along with overproduction of ROS in mice heart tissues. Nec-1 pre-treatment prevented cardiac contractile dysfunction in paraquat-challenged mice. Furthermore, Nec-1 reduced RIP1–RIP3 interaction, down-regulated the RIP1–RIP3–MLKL signal pathway, and dramatically inhibited the production of ROS. Collectively, these findings suggest that Nec-1 alleviated paraquat-induced myocardial contractile dysfunction through inhibition of necroptosis, an effect which was likely mediated via the RIP1–RIP3–MLKL signaling cascade. Further, ROS appeared to play an important role in this process. Thus, this process may represent a novel therapeutic strategy for the treatment of paraquat-induced cardiac contractile dysfunction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Toxicology Springer Journals

Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via RIP1-RIP3-MLKL-Dependent Necroptosis Pathway

Loading next page...
 
/lp/springer_journal/necrostatin-1-protects-against-paraquat-induced-cardiac-contractile-s0ftRJLAm0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Pharmacology/Toxicology; Cardiology
ISSN
1530-7905
eISSN
1559-0259
D.O.I.
10.1007/s12012-017-9441-z
Publisher site
See Article on Publisher Site

Abstract

Paraquat is a highly toxic prooxidant that triggers oxidative stress and multi-organ failure including that of the heart. To date, effective treatment of paraquat toxicity is still not established. Necroptosis, a newly discovered form of programmed cell death, was recently shown to be strongly associated with cardiovascular disease. Receptor interaction proteins 1 (RIP1), receptor interaction proteins 3 (RIP3), and mixed lineage kinase domain like (MLKL) are key proteins in the necroptosis pathway. Necrostatin-1 (Nec-1) is a specific inhibitor of necroptosis which acts by blocking the interaction between RIP1 and RIP3. In the present study, we studied the effect of Nec-1 on paraquat-induced cardiac contractile dysfunction and reactive oxygen species (ROS) production in the heart tissues using a mouse model. Our results revealed impaired contractile function, deranged intracellular Ca2+ handling and echocardiographic abnormalities in mice challenged with paraquat. We further found enhanced expressions of RIP1, RIP3, and MLKL along with overproduction of ROS in mice heart tissues. Nec-1 pre-treatment prevented cardiac contractile dysfunction in paraquat-challenged mice. Furthermore, Nec-1 reduced RIP1–RIP3 interaction, down-regulated the RIP1–RIP3–MLKL signal pathway, and dramatically inhibited the production of ROS. Collectively, these findings suggest that Nec-1 alleviated paraquat-induced myocardial contractile dysfunction through inhibition of necroptosis, an effect which was likely mediated via the RIP1–RIP3–MLKL signaling cascade. Further, ROS appeared to play an important role in this process. Thus, this process may represent a novel therapeutic strategy for the treatment of paraquat-induced cardiac contractile dysfunction.

Journal

Cardiovascular ToxicologySpringer Journals

Published: Jan 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off