Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs

Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs When the objective function is not locally Lipschitz, constraint qualifications are no longer sufficient for Karush–Kuhn–Tucker (KKT) conditions to hold at a local minimizer, let alone ensuring an exact penalization. In this paper, we extend quasi-normality and relaxed constant positive linear dependence condition to allow the non-Lipschitzness of the objective function and show that they are sufficient for KKT conditions to be necessary for optimality. Moreover, we derive exact penalization results for the following two special cases. When the non-Lipschitz term in the objective function is the sum of a composite function of a separable lower semi-continuous function with a continuous function and an indicator function of a closed subset, we show that a local minimizer of our problem is also a local minimizer of an exact penalization problem under a local error bound condition for a restricted constraint region and a suitable assumption on the outer separable function. When the non-Lipschitz term is the sum of a continuous function and an indicator function of a closed subset, we also show that our problem admits an exact penalization under an extended quasi-normality involving the coderivative of the continuous function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Programming Springer Journals

Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs

Loading next page...
 
/lp/springer_journal/necessary-optimality-conditions-and-exact-penalization-for-non-NYclSPdu0D
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Mathematics of Computing; Numerical Analysis; Combinatorics; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics
ISSN
0025-5610
eISSN
1436-4646
D.O.I.
10.1007/s10107-017-1112-0
Publisher site
See Article on Publisher Site

Abstract

When the objective function is not locally Lipschitz, constraint qualifications are no longer sufficient for Karush–Kuhn–Tucker (KKT) conditions to hold at a local minimizer, let alone ensuring an exact penalization. In this paper, we extend quasi-normality and relaxed constant positive linear dependence condition to allow the non-Lipschitzness of the objective function and show that they are sufficient for KKT conditions to be necessary for optimality. Moreover, we derive exact penalization results for the following two special cases. When the non-Lipschitz term in the objective function is the sum of a composite function of a separable lower semi-continuous function with a continuous function and an indicator function of a closed subset, we show that a local minimizer of our problem is also a local minimizer of an exact penalization problem under a local error bound condition for a restricted constraint region and a suitable assumption on the outer separable function. When the non-Lipschitz term is the sum of a continuous function and an indicator function of a closed subset, we also show that our problem admits an exact penalization under an extended quasi-normality involving the coderivative of the continuous function.

Journal

Mathematical ProgrammingSpringer Journals

Published: Jan 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off