Near-Wall Stress Balance in Front of a Wall-Mounted Cylinder

Near-Wall Stress Balance in Front of a Wall-Mounted Cylinder The stress balance in the near-wall flow in front of a cylinder mounted on a flat plate at moderate Reynolds number is investigated by applying highly resolved Large-Eddy Simulation (LES). The flow around wall-mounted bluff bodies is subject of research due to its wide relevance for engineering applications. However, the structure of the vortex system in front of such a bluff body is complex, bears strong velocity and pressure gradients in each spatial direction and has rich dynamics. Furthermore, the vortex system is located close to the investigated flat bottom wall (Dargahi, Exp. Fluids 8(1-2):1–12, 1989; Devenport and Simpson, J. Fluid Mech. 210:23–55, 1990). Thus, classical models for the treatment of the near-wall flow based on the logarithmic law of the wall or a power law cannot be expected to suffice in such kind of flow (Pope 2011). This paper assesses which contributors to the stress balance have significant influence on the balances residual and thus have to be considered by an approach to model the investigated near-wall flow. To do so, the momentum equation in streamwise direction is integrated in wall-normal direction and applied to the results gained from the LES. The evaluation of the stress balance along four selected wall-normal profiles indicates that the significance of each single term depends on where the profile is located. Outside the viscous layer, no term except the viscous stresses can be neglected in general. The amplitude of the pressure gradient as well as horizontal gradients of mean and fluctuating velocity are multiples of the estimated wall shear stress. Wall models not including a spatial approach are therefore most likely to fail in such kind of flow. "Flow, Turbulence and Combustion" Springer Journals

Near-Wall Stress Balance in Front of a Wall-Mounted Cylinder

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media B.V.
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Automotive Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial