Near-set Based Mucin Segmentation in Histopathology Images for Detecting Mucinous Carcinoma

Near-set Based Mucin Segmentation in Histopathology Images for Detecting Mucinous Carcinoma This paper introducesnear-set based segmentation method for extraction and quantification of mucin regions for detecting mucinouscarcinoma (MC which is a sub type of Invasive ductal carcinoma (IDC)). From histology point of view, the presence of mucin is one of the indicators for detection of this carcinoma. In order to detect MC, the proposed method majorly includes pre-processing by colour correction, colour transformation followed by near-set based segmentation and post-processing for delineating only mucin regions from the histological images at 40×. The segmentation step works in two phases such as Learn and Run.In pre-processing step, white balance method is used for colour correction of microscopic images (RGB format). These images are transformed into HSI (Hue, Saturation, and Intensity) colour space and H-plane is extracted in order to get better visual separation of the different histological regions (background, mucin and tissue regions). Thereafter, histogram in H-plane is optimally partitioned to find set representation for each of the regions. In Learn phase, features of typical mucin pixel and unlabeled pixels are learnt in terms of coverage of observed sets in the sample space surrounding the pixel under consideration. On the other hand, in Run phase the unlabeled pixels are clustered as mucin and non-mucin based on its indiscernibilty with ideal mucin, i.e. their feature values differ within a tolerance limit. This experiment is performed for grade-I and grade-II of MC and hence percentage of average segmentation accuracy is achieved within confidence interval of [97.36 97.70] for extracting mucin areas. In addition, computation of percentage of mucin present in a histological image is provided for understanding the alteration of such diagnostic indicator in MC detection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals

Near-set Based Mucin Segmentation in Histopathology Images for Detecting Mucinous Carcinoma

Loading next page...
 
/lp/springer_journal/near-set-based-mucin-segmentation-in-histopathology-images-for-LXgDtDNuBS
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Medicine & Public Health; Health Informatics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
ISSN
0148-5598
eISSN
1573-689X
D.O.I.
10.1007/s10916-017-0792-6
Publisher site
See Article on Publisher Site

Abstract

This paper introducesnear-set based segmentation method for extraction and quantification of mucin regions for detecting mucinouscarcinoma (MC which is a sub type of Invasive ductal carcinoma (IDC)). From histology point of view, the presence of mucin is one of the indicators for detection of this carcinoma. In order to detect MC, the proposed method majorly includes pre-processing by colour correction, colour transformation followed by near-set based segmentation and post-processing for delineating only mucin regions from the histological images at 40×. The segmentation step works in two phases such as Learn and Run.In pre-processing step, white balance method is used for colour correction of microscopic images (RGB format). These images are transformed into HSI (Hue, Saturation, and Intensity) colour space and H-plane is extracted in order to get better visual separation of the different histological regions (background, mucin and tissue regions). Thereafter, histogram in H-plane is optimally partitioned to find set representation for each of the regions. In Learn phase, features of typical mucin pixel and unlabeled pixels are learnt in terms of coverage of observed sets in the sample space surrounding the pixel under consideration. On the other hand, in Run phase the unlabeled pixels are clustered as mucin and non-mucin based on its indiscernibilty with ideal mucin, i.e. their feature values differ within a tolerance limit. This experiment is performed for grade-I and grade-II of MC and hence percentage of average segmentation accuracy is achieved within confidence interval of [97.36 97.70] for extracting mucin areas. In addition, computation of percentage of mucin present in a histological image is provided for understanding the alteration of such diagnostic indicator in MC detection.

Journal

Journal of Medical SystemsSpringer Journals

Published: Aug 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off