Near-field instability of variable property jet in normal gravity and microgravity fields

Near-field instability of variable property jet in normal gravity and microgravity fields The near-field instability of variable property jets of air, CO2, and He, issued into the ambient air, has been investigated experimentally within normal gravity and microgravity fields. The density ratio to the ambient air is unity for air jets, more than unity (1.53) for CO2 jets, and less than unity (0.14) for He jets, respectively. The ratio of kinematic viscosity to the ambient air is unity for air jets, less than unity for CO2 jets (0.53), and more than unity for He jets (7.75), respectively. The jet velocity is varied from 0.4 to 1.8 m/s and then the jet Reynolds number varies from 60 for Helium jet to 2,000 for CO2 jet, while the Richardson number varies from negative to positive values. The motion of the jet is visualized using a laser tomographic method and recorded by a high-speed digital video camera with 250 frames/s. The result shows that the instability of the jet is intensified when Re > 800 while it is weakened at Re < 800 at the microgravity field, indicating that the viscosity plays an important role in weakening the instability. Under a normal gravity field, the buoyancy also becomes important. In order to quantify the instability criteria, the quantity of the instability is introduced, which consists of the Kelvin–Helmholtz instability, buoyancy effect and viscous effect. When the ratio of the sum of Kelvin–Helmholtz and buoyancy forces to viscous force exceeds a certain value, around 12 in the present study, the jet becomes unstable even when Re < 800. These results reveal that the instability of variable property jets is influenced by the Kelvin–Helmholtz instability, the viscous effect and the buoyancy effect. Experiments in Fluids Springer Journals

Near-field instability of variable property jet in normal gravity and microgravity fields

Loading next page...
Copyright © 2009 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial