Navier–Stokes Hierarchies of Reduced MHD Models in Tokamak Geometry

Navier–Stokes Hierarchies of Reduced MHD Models in Tokamak Geometry We study the closure of reduced MHD models, such as the ones which are used in the modeling of Tokamaks and ITER, see Franck et al. (ESAIM: M2AN 49(5), 2015) and Guillard (2015) and references therein. We show how to modify the entropy moment methods to obtain a hierarchy of Navier–Stokes like models in potential formulation with a correct energy balance. Our procedure is well adapted to the complicated geometry of the torus. We obtain mainly two original results. One is a comparison principle between all these models: it explains that the dynamics of a reduced model is a lower bound of the dynamics of the initial model. The other one the existence of a weak solution to some of these complicate models adapted to the Tokamak geometry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mathematical Fluid Mechanics Springer Journals

Navier–Stokes Hierarchies of Reduced MHD Models in Tokamak Geometry

Loading next page...
 
/lp/springer_journal/navier-stokes-hierarchies-of-reduced-mhd-models-in-tokamak-geometry-QjJomeyksw
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Physics; Fluid- and Aerodynamics; Mathematical Methods in Physics; Classical and Continuum Physics
ISSN
1422-6928
eISSN
1422-6952
D.O.I.
10.1007/s00021-017-0323-8
Publisher site
See Article on Publisher Site

Abstract

We study the closure of reduced MHD models, such as the ones which are used in the modeling of Tokamaks and ITER, see Franck et al. (ESAIM: M2AN 49(5), 2015) and Guillard (2015) and references therein. We show how to modify the entropy moment methods to obtain a hierarchy of Navier–Stokes like models in potential formulation with a correct energy balance. Our procedure is well adapted to the complicated geometry of the torus. We obtain mainly two original results. One is a comparison principle between all these models: it explains that the dynamics of a reduced model is a lower bound of the dynamics of the initial model. The other one the existence of a weak solution to some of these complicate models adapted to the Tokamak geometry.

Journal

Journal of Mathematical Fluid MechanicsSpringer Journals

Published: Apr 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off