Natural zeolites enhance groundwater quality: evidences from Deccan basalts in India

Natural zeolites enhance groundwater quality: evidences from Deccan basalts in India The zeolite minerals characterized with hydrated aluminosilicates, negative ionic charge and 3D framework structure are well known for purifying the groundwater occurring in basaltic aquifer systems. However, the filtering mechanism at in situ field conditions is a complex process, which is rarely studied, and hence, it needs to be demonstrated. This paper explores the mechanism of hydrochemical processes and evolution of natural zeolites associated with basaltic rock to enhance groundwater quality. We present the hydrochemical findings and evolution processes derived from 46 groundwater samples (Nt = 46) belong to zeolitic (Nz = 25) and non-zeolitic (Nnz = 21) zones of a micro-watershed (4.4 km2) beset over basaltic terrain, Deccan Volcanic Province (DVP), India. The groundwater samples collected for one hydrological cycle (pre- and post-monsoons) are examined for major ion chemistry to determine the aqueous solution mechanism and ion-exchange process occurred in zeolitic and non-zeolitic zones. Further, the hydrochemical parameters are appraised by means of dominancy of ions, rock–water interactions, silicate weathering, chloro-alkaline indices, cation-exchange bivariate plots and the mechanism controlling groundwater chemistry. The results show that: 1) the purifying efficiency of zeolites for total ionic strength is observed as 63.85 and 68.58% during pre- and post-monsoons, respectively, 2) the significant reduction (36.51%) in total hardness attributed to the positive trend of chloro-alkaline indices depicting the ion-exchange phenomenon between Na+ and K+ (alkalies) and Ca2+ and Mg2+ (alkali-earth) elements in the zeolitic zone, 3) Gibbs plot shows the rock–water interaction as the predominant mechanism controlling groundwater chemistry in the zeolitic zone, and 4) the groundwater quality parameters from zeolitic zone are found within the permissible limit of WHO drinking water standards. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Earth Sciences Springer Journals

Natural zeolites enhance groundwater quality: evidences from Deccan basalts in India

Loading next page...
 
/lp/springer_journal/natural-zeolites-enhance-groundwater-quality-evidences-from-deccan-qN0Ct6PAzw
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Hydrology/Water Resources; Geochemistry; Environmental Science and Engineering; Terrestrial Pollution; Biogeosciences
ISSN
1866-6280
eISSN
1866-6299
D.O.I.
10.1007/s12665-017-6873-5
Publisher site
See Article on Publisher Site

Abstract

The zeolite minerals characterized with hydrated aluminosilicates, negative ionic charge and 3D framework structure are well known for purifying the groundwater occurring in basaltic aquifer systems. However, the filtering mechanism at in situ field conditions is a complex process, which is rarely studied, and hence, it needs to be demonstrated. This paper explores the mechanism of hydrochemical processes and evolution of natural zeolites associated with basaltic rock to enhance groundwater quality. We present the hydrochemical findings and evolution processes derived from 46 groundwater samples (Nt = 46) belong to zeolitic (Nz = 25) and non-zeolitic (Nnz = 21) zones of a micro-watershed (4.4 km2) beset over basaltic terrain, Deccan Volcanic Province (DVP), India. The groundwater samples collected for one hydrological cycle (pre- and post-monsoons) are examined for major ion chemistry to determine the aqueous solution mechanism and ion-exchange process occurred in zeolitic and non-zeolitic zones. Further, the hydrochemical parameters are appraised by means of dominancy of ions, rock–water interactions, silicate weathering, chloro-alkaline indices, cation-exchange bivariate plots and the mechanism controlling groundwater chemistry. The results show that: 1) the purifying efficiency of zeolites for total ionic strength is observed as 63.85 and 68.58% during pre- and post-monsoons, respectively, 2) the significant reduction (36.51%) in total hardness attributed to the positive trend of chloro-alkaline indices depicting the ion-exchange phenomenon between Na+ and K+ (alkalies) and Ca2+ and Mg2+ (alkali-earth) elements in the zeolitic zone, 3) Gibbs plot shows the rock–water interaction as the predominant mechanism controlling groundwater chemistry in the zeolitic zone, and 4) the groundwater quality parameters from zeolitic zone are found within the permissible limit of WHO drinking water standards.

Journal

Environmental Earth SciencesSpringer Journals

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off