Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Nationally Representative Plot Network Reveals Contrasting Drivers of Net Biomass Change in Secondary and Old-Growth Forests

Nationally Representative Plot Network Reveals Contrasting Drivers of Net Biomass Change in... Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha−1 y−1, whereas no significant change was detected in old-growth forests (+0.28; −0.72 to 1.29 Mg ha−1 y−1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecosystems Springer Journals

Nationally Representative Plot Network Reveals Contrasting Drivers of Net Biomass Change in Secondary and Old-Growth Forests

Loading next page...
1
 
/lp/springer_journal/nationally-representative-plot-network-reveals-contrasting-drivers-of-f0FsDunfP8

References (64)

Publisher
Springer Journals
Copyright
Copyright © 2016 by The Author(s)
Subject
Life Sciences; Ecology; Plant Sciences; Zoology; Environmental Management; Geoecology/Natural Processes; Hydrology/Water Resources
ISSN
1432-9840
eISSN
1435-0629
DOI
10.1007/s10021-016-0084-x
Publisher site
See Article on Publisher Site

Abstract

Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha−1 y−1, whereas no significant change was detected in old-growth forests (+0.28; −0.72 to 1.29 Mg ha−1 y−1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass.

Journal

EcosystemsSpringer Journals

Published: Nov 28, 2016

There are no references for this article.