Nanoscale sensing devices for turbulence measurements

Nanoscale sensing devices for turbulence measurements A collection of nanoscale sensing devices developed specifically for high-frequency turbulence measurements is presented. The new sensors are all derived from the nanoscale thermal anemometry probe (NSTAP), which uses a free-standing platinum wire as active sensing element. Each sensor is designed and fabricated to measure a specific quantity and can be customized for special applications. In addition to the original NSTAP (for single-component velocity measurement), the new sensors include the T-NSTAP (for temperature measurement), the x-NSTAP (for two-component velocity measurement), and the q-NSTAP (for humidity measurement). This article provides a summary of the NSTAP family including details of design and fabrication as well as presentation of flow measurements using these sensors. Also, a custom-made constant-temperature anemometer that allows proper operation of the NSTAP sensors will be introduced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Nanoscale sensing devices for turbulence measurements

Loading next page...
 
/lp/springer_journal/nanoscale-sensing-devices-for-turbulence-measurements-h34hevHAF0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2000-0
Publisher site
See Article on Publisher Site

Abstract

A collection of nanoscale sensing devices developed specifically for high-frequency turbulence measurements is presented. The new sensors are all derived from the nanoscale thermal anemometry probe (NSTAP), which uses a free-standing platinum wire as active sensing element. Each sensor is designed and fabricated to measure a specific quantity and can be customized for special applications. In addition to the original NSTAP (for single-component velocity measurement), the new sensors include the T-NSTAP (for temperature measurement), the x-NSTAP (for two-component velocity measurement), and the q-NSTAP (for humidity measurement). This article provides a summary of the NSTAP family including details of design and fabrication as well as presentation of flow measurements using these sensors. Also, a custom-made constant-temperature anemometer that allows proper operation of the NSTAP sensors will be introduced.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 20, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off