Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields

Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields High-intensity nanosecond pulsed electric fields (nsPEFs) permeabilize cell membranes. Although progress has been made toward an understanding of the mechanism of nsPEF-induced membrane poration, the dependence of pore size and distribution on pulse duration, strength, number, and repetition rate remains poorly defined experimentally. In this paper, we characterize the size of nsPEF-induced pores in living cell membranes by isosmotically replacing the solutes in pulsing media with polyethylene glycols and sugars before exposing Jurkat T lymphoblasts to 5 ns, 10 MV/m electric pulses. Pore size was evaluated by analyzing cell volume changes resulting from the permeation of osmolytes through the plasma membrane. We find that pores created by 5 ns pulses have a diameter between 0.7 and 0.9 nm at pulse counts up to 100 with a repetition rate of 1 kHz. For larger number of pulses, either the pore diameter or the number of pores created, or both, increase with increasing pulse counts. But the prevention of cell swelling by PEG 1000 even after 2000 pulses suggests that 5 ns, 10 MV/m pulses cannot produce pores with a diameter larger than 1.9 nm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields

Loading next page...
 
/lp/springer_journal/nanometer-scale-permeabilization-and-osmotic-swelling-induced-by-5-ns-Y24AaUTWmf
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-016-9918-x
Publisher site
See Article on Publisher Site

Abstract

High-intensity nanosecond pulsed electric fields (nsPEFs) permeabilize cell membranes. Although progress has been made toward an understanding of the mechanism of nsPEF-induced membrane poration, the dependence of pore size and distribution on pulse duration, strength, number, and repetition rate remains poorly defined experimentally. In this paper, we characterize the size of nsPEF-induced pores in living cell membranes by isosmotically replacing the solutes in pulsing media with polyethylene glycols and sugars before exposing Jurkat T lymphoblasts to 5 ns, 10 MV/m electric pulses. Pore size was evaluated by analyzing cell volume changes resulting from the permeation of osmolytes through the plasma membrane. We find that pores created by 5 ns pulses have a diameter between 0.7 and 0.9 nm at pulse counts up to 100 with a repetition rate of 1 kHz. For larger number of pulses, either the pore diameter or the number of pores created, or both, increase with increasing pulse counts. But the prevention of cell swelling by PEG 1000 even after 2000 pulses suggests that 5 ns, 10 MV/m pulses cannot produce pores with a diameter larger than 1.9 nm.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off