Access the full text.
Sign up today, get DeepDyve free for 14 days.
It has been shown that manganese dioxide (MnO2) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO2-mediated systems were still unclear. In this study, it was proven that nano-MnO2 were effective in transforming triclosan under acidic conditions (pH 3.5–5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599–1.5314 h−1) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO2 was enhanced in the presence of low-concentration humic acid (1–10 mg L−1). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO2-mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO2. A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO2 in complex water matrices.
Environmental Science and Pollution Research – Springer Journals
Published: Mar 10, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.